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42 ABSTRACT   

43 The  determinants  of  severe  COVID-19  in  non-elderly  adults  are  poorly  understood,             
44 which  limits  opportunities  for  early  intervention  and  treatment.  Here  we  present  novel              

45 machine  learning  frameworks  for  identifying  common  and  rare  disease-associated           
46 genetic  variation,  which  outperform  conventional  approaches.  By  integrating  single-cell           

47 multiomics  profiling  of  human  lungs  to  link  genetic  signals  to  cell-type-specific  functions,              

48 we  have  discovered  and  validated  over  1,000  risk  genes  underlying  severe  COVID-19              
49 across  19  cell  types.  Identified  risk  genes  are  overexpressed  in  healthy  lungs  but               

50 relatively  downregulated  in  severely  diseased  lungs.  Genetic  risk  for  severe  COVID-19,             
51 within  both  common  and  rare  variants,  is  particularly  enriched  in  natural  killer  (NK)  cells,               

52 which  places  these  immune  cells  upstream  in  the  pathogenesis  of  severe  disease.              

53 Mendelian  randomization  indicates  that  failed  NKG2D-mediated  activation  of  NK  cells            
54 leads  to  critical  illness.  Network  analysis  further  links  multiple  pathways  associated  with              

55 NK  cell  activation,  including  type-I-interferon-mediated  signalling,  to  severe  COVID-19.           
56 Our  rare  variant  model,  PULSE,  enables  sensitive  prediction  of  severe  disease  in              

57 non-elderly  patients  based  on  whole-exome  sequencing;  individualized  predictions  are           
58 accurate  independent  of  age  and  sex,  and  are  consistent  across  multiple  populations              

59 and  cohorts.  Risk  stratification  based  on  exome  sequencing  has  the  potential  to              

60 facilitate  post-exposure  prophylaxis  in  at-risk  individuals,  potentially  based  around           
61 augmentation  of  NK  cell  function.  Overall,  our  study  characterizes  a  comprehensive             

62 genetic  landscape  of  COVID-19  severity  and  provides  novel  insights  into  the  molecular              
63 mechanisms  of  severe  disease,  leading  to  new  therapeutic  targets  and  sensitive             

64 detection   of   at-risk   individuals.   

65   

66   

67   
68   
69   
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71 INTRODUCTION   

72 Infection  with  severe  acute  respiratory  syndrome  coronavirus  2  (SARS-CoV-2)  giving            
73 rise  to  coronavirus  disease  2019  (COVID-19)  has  caused  a  global  pandemic  with              

74 almost  unprecedented  morbidity  and  mortality 1 .  The  severity  of  COVID-19  is  markedly             
75 variable  ranging  from  an  asymptomatic  infection  to  fatal  multiorgan  failure.  Severity             

76 correlates  with  age  and  comorbidities 2  but  not  exclusively 3 .  Indeed,  host  genetics  has              

77 been  thought  to  be  an  essential  determinant  of  severity 4 ,  but  this  is  poorly  understood.                
78 Improved  tools  to  identify  individuals  at  risk  of  severe  COVID-19  could  facilitate              

79 life-saving   precision   medicine.   

80 There  have  been  several  efforts  to  address  the  genetic  basis  of  COVID-19  severity 5,6 ,              
81 including  large-scale  genome-wide  association  studies  (GWASs) 7,8  and  rare  variant           

82 approaches 9–12 .  However,  the  biological  interpretation  of  those  identified  loci  has  been             
83 difficult,  partially  because  of  the  confounding  effects  of  patient  age  and  comorbidities 13 .              

84 The  development  of  novel  therapies  is  likely  to  result  from  understanding  and  modifying               

85 the  host  immune  response  to  the  SARS-CoV-2  virus,  independent  of  immutable  factors              
86 such   as   age,   sex,   and   general   health.   

87 A  primary  cause  of  morbidity  and  mortality  in  COVID-19  is  respiratory  disease  and               

88 specifically,  a  hyperinflammatory  response  within  the  lung  that  occurs  in  an             
89 age-independent  manner 14 .  This  is  the  basis  of  a  number  of  interventions  based  on               

90 immunosuppression 15 ,  which  have  repurposed  treatments  used  for  other  diseases,           

91 particularly  autoimmune  diseases.  Efficacy  and  the  side  effect  profile  is  likely  to  be               
92 improved   by   a   COVID-19-specific   immunomodulatory   approach.   

93 Profiles  of  the  immune  response  associated  with  severe  COVID-19  have  produced  a              

94 number  of  conflicting  observations.  These  studies  have  variously  linked  COVID-19            
95 severity  to  CD8  T  cells 16 ,  CD19  B  cells 17 ,  eosinophils 18 ,  and  myeloid  cells 19 .  Single-cell               

96 omic  profiling  has  demonstrated  the  differential  function  of  various  immune  cell  types  in               
97 severe  disease  as  opposed  to  mild  disease  or  non-infected  condition 20–25 .  However,             

98 these  studies  have  focused  on  transcriptomics  rather  than  the  underlying  genomics,  and              

99 have   been   observational   rather   than   predictive.     
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100 Failure  of  the  type  I  interferon  response  is  linked  to  the  incidence  of  severe  COVID-19.                 
101 SARS-CoV-2  can  initially  inhibit  the  normal  type  I  interferon  response 26  in  order  to               

102 facilitate  viral  replication.  This  delay  is  thought  to  be  an  essential  determinant  of  a  later                 
103 hyperinflammatory  response  and  consequently  of  COVID-19  severity 27 .  Natural  killer           

104 (NK)  cells  form  a  crucial  component  of  the  innate  immune  response  to  viral  infections.                

105 Interestingly,  NK  cells  are  activated  via  the  type  I  interferon  response.  Genetic  evidence               
106 suggests  that  NK  cell  function  is  a  key  determinant  of  severe  COVID-19,  including               

107 loss-of-function  (LoF)  variants  within  an  essential  NK  cell  activating  receptor,  NKG2C,  in              
108 patients  suffering  severe  COVID-19 28 .  A  recent  study  of  autoantibodies  supports  this             

109 conclusion  by  showing  that  the  impaired  activation  of  NK  cells,  via  the  type  I  interferon                 

110 response  in  particular,  is  associated  with  severe  COVID-19 29 .  All  of  this  evidence  is               
111 suggestive   of   a   role   for   NK   cells   in   severe   COVID-19   but   not   conclusive.    

112 To  understand  the  genetic  basis  of  COVID-19  severity  as  well  as  gain  insights  into  its                 

113 molecular  mechanisms,  we  sought  out  to  integrate  the  genetic  architecture  of  severe              
114 COVID-19,  profiled  in  an  age-independent  manner,  with  single-cell-resolution  functional           

115 profiling  of  lung  tissue.  We  developed  two  machine  learning  frameworks,  RefMap  and              
116 PULSE,  for  common  and  rare  variant  analysis  respectively,  with  increased  discovery             

117 power  compared  to  traditional  methodology.  Using  our  approaches,  we  identified  over             

118 1,000  genes  associated  with  critical  illness  across  19  cell  types,  and  the              
119 cell-type-specific  molecular  mechanisms  underlying  severe  disease  were  uncovered.          

120 Notably,  both  common  and  rare  variant  analyses  underscored  the  importance  of  NK              
121 cells  in  determining  COVID-19  severity,  which  extends  previous  literature 30 .  We  have             

122 developed  a  prediction  model  for  severe  COVID-19  using  rare  variants  profiled  by              

123 exome  sequencing,  which  achieves  sensitive  and  age-  and  population-independent  risk            
124 prediction  across  multiple  cohorts.  This  prediction  method  could  be  particularly  useful             

125 for  targeting  medical  interventions  for  individuals  where  SARS-CoV-2  vaccination  is  not             
126 possible  or  is  not  effective 31 .   Altogether,  our  study  unveils  a  holistic  genetic  landscape  of                

127 COVID-19  severity  and  provides  a  better  understanding  of  the  disease  pathogenesis,             

128 implicating   new   prevention   strategies   and   therapeutic   targets.   

129 RESULTS   
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130 RefMap  analysis  of  common  variants  uncovers  cell-type-specific  genetic  basis  of            
131 COVID-19   severity   

132 We  used  the  RefMap  machine  learning  model  ( Methods )  to  identify  the  genomic              

133 regions  and  genes  associated  with  severe  COVID-19.  Briefly,  RefMap  is  a  Bayesian              
134 network  that  combines  genetic  signals  (e.g.,  allele   Z -scores)  with  functional  genomic             

135 profiling  (e.g.,  ATAC-seq  and  ChIP-seq)  to  fine-map  risk  regions  for  complex  diseases.              

136 With  RefMap,  we  can  scan  the  genome  for  functional  regions  in  which              
137 disease-associated  genetic  variation  is  significantly  shifted  from  the  null  distribution.  The             

138 power  of  the  RefMap  model  for  gene  discovery  and  recovery  of  missing  heritability  has                
139 been  demonstrated  in  our  recent  work 32 .  Here,  to  achieve  cell-type-specific  resolution             

140 within  multicellular  tissue,  we  modified  RefMap  to  integrate  single-cell  multiomic  profiling             

141 of  human  lungs  with  COVID-19  GWAS  data  ( Fig.  1a ).  In  particular,  we  obtained               
142 summary  statistics  (COVID-19  Host  Genetics  Initiative,  Release  5,  phenotype  definition            

143 A2;  5,101  cases  versus  1,383,241  population  controls)  from  the  largest  GWAS  study  of               
144 COVID-19 7 ,  where  age,  sex,  and  20  first  principal  components  were  included  in  the               

145 analysis  as  covariates.  Severe  COVID-19  was  defined  by  the  requirement  for             
146 respiratory  support  or  death  attributed  to  COVID-19.  Human  lung  single-cell  multiomic             

147 profiling,  including  snRNA-seq  and  snATAC-seq,  was  retrieved  from  a  recent  study  of              

148 healthy  individuals 33 .  There  are  19  cell  types  identified  in  both  snATAC-seq  and              
149 snRNA-seq  profiles,  including  epithelial  (alveolar  type  1  (AT1),  alveolar  type  2  (AT2),              

150 club,  ciliated,  basal,  and  pulmonary  neuroendocrine  (PNEC)),  mesenchymal          
151 (myofibroblast,  pericyte,  matrix  fibroblast  1  (matrix  fib.  1),  and  matrix  fibroblast  2  (matrix               

152 fib.  2)),  endothelial  (arterial,  lymphatic,  capillary  1  (cap1),  and  capillary  2  (cap2)),  and               

153 hematopoietic  (macrophage,  B-cell,  T-cell,  NK  cell,  and  enucleated  erythrocyte)  cell            
154 types.  We  adopted  these  19  cell  types  as  the  reference  set  within  lung  tissue  throughout                 

155 our  study.  Based  on  snATAC-seq  peaks  called  in  one  or  more  of  the  19  cell  types  to                   
156 annotate  functional  regions,  we  used  RefMap  to  identify  disease-associated  genomic            

157 regions  from  the  COVID-19  GWAS  data,  which  resulted  in  6,662  1kb  regions  passing               

158 the  5%  significance  threshold  ( Q +/- -score>0.95,   Methods ;  referred  to  as  RefMap            
159 COVID-19  regions).  These  identified  regions  were  further  intersected  with  open            

160 chromatin  in  individual  cell  types  based  on  corresponding  snATAC-seq  peaks,  resulting             
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161 in  cell-type-specific  RefMap  regions  (mean  per  cell  type  =1732.8,  standard  deviation             
162 (SD)=623.5;   Fig.  1b ,   Supplementary  Table  1 ).  After  removing  RefMap  regions  present             

163 in  more  than  one  cell  type  (mean  per  cell  type  =121.2,  SD=142.7),  we  observed  only  a                  
164 weak  correlation  between  the  number  of  unique  RefMap  regions  and  the  number  of               

165 snATAC-seq  peaks  detected  per  cell  type  (Spearman   ρ =0.40,   P >0.05;   Fig.  1b ),             

166 indicating   enrichment   of   genetic   signals   within   certain   cell   types.     

167 Next,  we  sought  to  map  the  target  genes  of  RefMap  COVID-19  regions  in  a                
168 cell-type-specific  manner.  In  particular,  we  identified  the  closest  genes  that  are             

169 expressed  in  the  corresponding  cell  type  for  individual  RefMap  regions  ( Methods ).  In              
170 total,  we  discovered  1,370  genes  (referred  to  RefMap  COVID-19  genes;  mean  per  cell               

171 type  =279.9  and  SD=80.3;   Fig.  1c ,   Supplementary  Table  1 )  associated  with  the  severe               

172 disease.  Interestingly,  hematopoietic  cells  have  the  largest  number  of  unique  RefMap             
173 regions  and  genes  among  all  major  cell  types  ( Fig.  1d );  for  example,  there  is  a                 

174 significant  enrichment  of  unique  RefMap  regions  observed  for  hematopoietic  cells            
175 versus  epithelial  cells  ( P =5.2e-03,  odds  ratio  (OR)=1.15,  Fisher's  exact  test;   Fig.  1d ).              

176 This  indicates  a  critical  role  of  immune  cells,  which  are  primarily  hematopoietic,  in  the                
177 development  of  severe  COVID-19 16–19 .  To  profile  the  cell-cell  interactions  underlying            

178 severe  COVID-19  from  a  genetic  perspective,  we  constructed  a  cell  correlation  matrix              

179 based  on  the  overlap  of  RefMap  genes  between  cell  types  ( Fig.  1e ).  We  discovered  that                 
180 the  correlation  is  strongest  between  functionally  related  cells,  demonstrating  that  the             

181 RefMap   signal   is   consistent   with   known   biology 33 .     

182 To  replicate  our  findings,  we  obtained  SNPs  associated  with  severe  COVID-19  from  a               
183 GWAS  for  an  entirely  independent  sample  set  (the  23andMe  cohort,  15,434             

184 COVID-19-positive  cases  and  1,035,598  population  controls) 5 .  The  total  union  of            

185 RefMap  regions  is  significantly  enriched  with  SNPs  associated  with  multiple  COVID-19             
186 phenotypes  defined  in  this  new  sample  set  (mean   P <5e-03,  Fisher’s  exact  test;   Fig.  1f ,                

187 Supplementary  Table  2 ;   Methods ).  Specifically,  the  most  significant  enrichment  is  with             
188 SNPs  associated  with  COVID-19  requiring  respiratory  support  (mean   P =4.68e-04,           

189 Fisher’s  exact  test;   Fig.  1f ).  We  further  performed  the  enrichment  analysis  per  cell  type;                

190 only  RefMap  regions  associated  specifically  with  T  cells  and  NK  cells  are  significantly               
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191 enriched  with  disease-associated  SNPs  across  all  measured  COVID-19  phenotypes           
192 (mean    P <0.05,   Fisher’s   exact   test;    Supplementary   Table   2 ).   

193 Heritability  analysis  and  Mendelian  randomization  link  NK  cell  function  to            
194 COVID-19   severity   

195 The  LD  score  regression  (LDSC) 34  has  been  used  to  measure  the  total  SNP-based               
196 heritability  ( h 2 )  from  the  GWAS  study  of  severe  COVID-19  (COVID-19  Host  Genetics              

197 Initiative,  Release  5,  phenotype  definition  A2) 7 .  Here,  we  examined  the  partitioning  of              
198 SNP-based  heritability  for  severe  COVID-19  within  RefMap  genes  ( Methods ).  We            

199 discovered  that  the  heritability  of  severe  COVID-19  is  significantly  enriched  for  RefMap              

200 genes  (OR=4.6,  standard  error  (SE)=0.78,   P =1.55e-07;   Fig.  2a ,   Supplementary  Table            
201 3 ).  We  compared  the  proportion  of  SNP-based  heritability  captured  by  RefMap  to  other               

202 methods  ( Methods ),  including  naïve  GWAS 7  and  MAGMA 35 .  The  proportion  of            
203 heritability  within  naïve  GWAS  genes  is  0.15  compared  to  0.37  within  MAGMA  genes,               

204 but  0.77  within  RefMap  genes  ( Fig.  2b ,   Supplementary  Table  3 ),  representing  a              

205 five-fold  improvement  in  the  recovered  heritability  based  on  RefMap  over  traditional             
206 methods.  The  proportion  of  SNP-based  heritability  for  hospitalized  COVID-19           

207 (COVID-19  Host  Genetics  Initiative,  Release  5,  phenotype  definition  B2)  within  RefMap             
208 genes  is  0.62  and  within  COVID-19  independent  of  severity  (COVID-19  Host  Genetics              

209 Initiative,  Release  5,  phenotype  definition  C2)  it  is  0.52  ( Fig.  2b ,   Supplementary  Table               
210 3 ).  In  both  cases  the  improvement  in  captured  heritability  based  on  RefMap  compared               
211 to  traditional  methods  is  three-fold.  Consistent  with  the  design  of  our  model,  the               

212 recovered   heritability   is   highest   in   severe   COVID-19.   

213 Next,  we  used  cell-type-specific  RefMap  genes  to  determine  which  cell  types  are              
214 involved  in  the  development  of  severe  COVID-19.  Specifically,  we  calculated  the             

215 partitioned  heritability  per  cell  type  within  the  severe  COVID-19  GWAS  (A2)  and  also               

216 within  GWAS  for  hospitalized  versus  non-hospitalized  COVID-19  (B2)  and  COVID-19            
217 versus  population  (C2)  ( Methods ).  For  severe  COVID-19,  of all  19  cell  types  tested,  NK               

218 cells  are  the  most  enriched  with  SNP-based  heritability  (OR=8.87,  SE=3.68,   P =0.016;             
219 Fig.  2a ,   Supplementary  Table  3 ).  The  same  is  also  true  for  hospitalized  COVID-19               

220 (OR=10.57,  SE=4.95,   P =0.039),  but  not  for  COVID-19  irrespective  of  severity            
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221 (OR=5.74,  SE=3.09,   P =0.077;   Supplementary  Table  3 ).  Thus,  we  conclude  that  NK             
222 cell   function   is   enriched   with   severe   disease-associated   genetic   variation.   

223 Two-sample   Mendelian  randomization  (MR)  facilitates  identification  of  a  causal           

224 relationship  between  an  exposure  and  an  outcome 36 .  We  examined  whether  NK  cell              
225 populations  measured  in  the  blood  are  causally  related  to  severe  COVID-19.  In  total,  46                

226 GWAS  measures  of  NK  cell  subtypes  were  identified 37  ( Methods ).  After  harmonizing             

227 exposure  and  outcome  genetic  instruments,  we  excluded  tests  with  less  than  five  SNPs               
228 ( Methods ).  With  MR,  three  exposures  were  shown  to  be  causally  related  to  severe               

229 COVID-19  after  correcting  for  multiple  testing  ( P <1e-03,  multiplicative  random  effects            
230 (MRE),  inverse-variance  weighted  (IVW)).  All  three  exposures  relate  to  NKG2D/CD314            

231 expression  on  the  cell  surface,  where  a  higher  number  of  NKG2D/CD314-  cells  was               

232 linked  to  severe  COVID-19  (A2)  ( Figs.  2c-d )  and  a  higher  number  of  NKG2D/CD314+               
233 cells  is  protective  ( Fig.  2e ).  Evidence  of  genetic  pleiotropy  (MR  PRESSO  intercept  not               

234 significantly  different  from  zero,   P >0.05;   Fig.  2f )  or  instrument  heterogeneity  ( P >0.05,             

235 Cochran’s   Q  test,  and   I 2 
GX >0.95;   Fig.  2f )  are  not  evident.  Moreover,  robust  measures               

236 are  significant  for  all  three  exposures  ( Fig.  2f ).  We  also  tested  the  identical  phenotypes                
237 with  alternative  COVID-19  phenotype  GWAS;  we  discovered  that  CD335+  CD314-  cell             

238 counts  are  also  causally  associated  with  hospitalized  COVID-19  (B2),  and  with             

239 COVID-19  independent  of  severity  (C2)  ( Supplementary  Fig.  1 ),  but  in  each  case  the               
240 effect  size  is  reduced  compared  to  severe  COVID-19  (A2).  NKG2D/CD314  is  a  primary               

241 receptor  responsible  for  NK  cell  activation 38  and  in  light  of  this,  we  conclude  that  severe                 
242 COVID-19  is  associated  with  a  loss  of  NK  cell  cytotoxicity  rather  than  a  gain  of  function                  

243 linked   to   NKG2D/CD314-   cells.   

244 Inspired  by  our  MR  analysis,  we  further  tested  if  the  expression  of  RefMap  genes                

245 reflects  a  functional  difference  between  NKG2D/CD314+  and  NKG2D/CD314-  cells.  We            
246 examined  the  expression  levels  of  NK-cell  RefMap  genes  based  on  scRNA-seq  data              

247 from  healthy  lungs 39 ,  and  discovered  that  RefMap  gene  expression  is  higher  within              
248 NKG2D/CD314+  cells  than  NKG2D/CD314-  cells  ( P =0.036,  one-tailed  Wilcoxon          

249 rank-sum  test;   Fig.  2g ).  This  further  supports  the  functional  significance  of  RefMap              
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250 genes  in  COVID-19  severity  and  associates  the  genetic  risk  of  severe  COVID-19              
251 directly   with   NK   cell   activity.   

252 Transcriptome  analysis  supports  the  functional  significance  of  RefMap  genes  in            
253 health   and   severe   COVID-19   

254 To  link  RefMap  COVID-19  genes  to  the  underlying  biology,  we  first  performed  functional               
255 enrichment  analyses  based  on  gene  ontology  (GO)  and  KEGG  pathways 40  ( Figs.  3a              

256 and   3b ,  Supplementary  Tables  4  and   5 ).  We  observed  that  RefMap  NK-cell  genes  are                
257 enriched  with  pathways  and  ontologies  related  to  intra-  and  intercellular  signalling             

258 important  for  NK  cell  activation,  including  "Phospholipase  D  signalling  pathway" 41 ,            

259 “Antigen  processing  and  presentation”,  "regulation  of  small  GTPase  mediated  signal            
260 transduction  (GO:0051056)" 42 ,  and  "regulation  of  intracellular  signal  transduction          

261 (GO:1902531)"  (adjusted   P <0.1;   Figs.  3a  and   3b ,   Supplementary  Tables  4  and   5 ).              
262 This  is  consistent  with  the  hypothesis  that  COVID-19  severity  is  determined  by  failed              

263 activation  of  NK  cells.  Furthermore,  the  pathway  with  the  highest  enrichment  is  “human               

264 immunodeficiency  virus  (HIV)  1  infection”  (adjusted   P =3e-04;   Fig.  3b ).  Since  HIV-1             
265 works  to  suppress  NK  cell  activation 43 ,  and  NK  cell  function  has  been  associated  with                

266 an  effective  immune  response  to  HIV 44 ,  this  result  is  also  consistent  with  a  role  of  NK                  
267 cells  in  severe  COVID-19.  Other  cell-type-specific  RefMap  gene  lists  are  also  enriched              

268 with  relevant  biological  pathways.  For  example,  AT2-cell  genes  are  linked  to  pathways              

269 associated  with  viral  infection  such  as  ‘human  papillomavirus  infection’  and  ‘viral             
270 carcinogenesis’  (adjusted   P <0.1;   Supplementary  Table  5 ),  which  is  consistent  with  the             

271 established  role  of  AT2  cells  as  the  initial  site  of  SARS-CoV-2  entry  into  host  cells 45 .                 
272 T-cell  genes  are  enriched  with  ‘IL17-signalling  pathway’  (adjusted   P =0.021;           

273 Supplementary  Table  5 )  which  is  interesting  in  light  of  previous  literature  highlighting              

274 the  production  of  IL-17  by  T  cells  from  COVID-19  patients  as  a  potential  therapeutic                
275 target 46 .   

276 Next,  we  investigated  the  baseline  expression  pattern  of  RefMap  genes  in  healthy              

277 lungs.  In  particular,  we  calculated  mean  expression  levels  of  genes  in  different  cell  types                
278 based  on  the  lung  snRNA-seq  data  from  Wang  et  al. 33 ,  and  then  compared  the                

279 expression  of  RefMap  genes  with  the  total  set  of  expressed  genes  in  each  cell  type.                 
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280 Interestingly,  although  the  gene  expression  level  was  not  an  input  to  the  RefMap  model,                
281 RefMap  genes  are  expressed  at  a  higher  level  compared  to  the  background              

282 transcriptome  in  all  19  cell  types,  including  immune  and  epithelial  cells  (false  discovery               
283 rate  (FDR)<0.1,  one-tailed  Wilcoxon  rank-sum  test;   Fig.  3c )  with  the  exception  of              

284 pericytes  (FDR=0.11,   Z -score=1.25);  it  is  interesting  to  note  that  pericytes  may  be              

285 downstream  in  the  pathogenesis  of  COVID-19  because  they  are  protected  by  an              
286 endothelial  barrier 47 .  This  supports  the  functional  significance  of  RefMap  genes  across             

287 multiple  cell  types  in  healthy  human  lungs.  As  a  negative  control,  we  performed  a                
288 similar  expression  comparison  between  non-developmental  genes  and  all  expressed           

289 genes  in  lungs,  which  yielded  no  significant  difference  ( Supplementary  Fig.  2 ;             

290 Methods ).  In  summary,  our  transcriptome  analyses  indicate  that  RefMap  genes  are             
291 expressed  above  background  in  relevant  cell  types,  supporting  their  important  role  in              

292 lung   function.   

293 To  obtain  further  insights  into  the  function  of  RefMap  COVID-19  regions,  we  tested               
294 whether  RefMap  regions  are  enriched  with  cell-type-specific  candidate  cis-regulatory           

295 elements  (cCREs,  or  enhancers  and  promoters)  defined  by  H3K27ac  and  H3K4me3.             
296 We  obtained  cCREs  for  lung  tissues  and  primary  cells  from  the  ENCODE  project 48               

297 ( Supplementary  Table  6 ),  and  examined  the  overlap  between  those  cCREs  and             

298 RefMap  regions  by  permutation  test 49 .  We  discovered  that  RefMap  regions  specific  to              
299 immune  cells  (e.g.,  T  cells,  B  cells,  and  NK  cells)  are  significantly  enriched  with  cCREs                 

300 in  corresponding  cell  types  (FDR<0.1;   Fig.  3d ).  For  other  cell  types,  RefMap  regions  are                
301 generally  enriched  with  cCREs  from  lung  tissue  (FDR<0.1;   Fig.  3d ).  These  observations              

302 are  consistent  with  an  important  role  of  RefMap  regions  in  the  regulation  of  gene                

303 expression.  Moreover,  the  enrichment  with  cCREs  across  a  variety  of  individuals  and              
304 datasets  supports  the  generalizability  of  the  genetic  architecture  defined  by  RefMap.  A              

305 similar  association  between  genome-wide  snATAC-seq  peaks  and  cCREs  was  also            
306 observed   ( Supplementary   Fig.   3 ).   

307 We  have  shown  that  RefMap  COVID-19  regions  are  enriched  within  promoters  and              

308 enhancers  responsible  for  regulating  gene  expression  in  healthy  lung  tissue.  On  this              

309 basis,  we  hypothesized  that  genetic  variation  within  RefMap  regions  would  alter  the              
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310 expression  of  corresponding  target  genes  in  the  context  of  severe  disease.  Specifically,              
311 we  proposed  that  RefMap  genes  would  be  expressed  at  a  lower  level  in  lung  tissue  from                  

312 severe  COVID-19  patients  than  moderately  affected  patients.  To  validate  this            
313 hypothesis,  we  obtained  scRNA-seq  data  from  the  respiratory  system  for  a  large              

314 COVID-19  cohort 23 ,  including  12  bronchoalveolar  lavage  fluid  (BALF)  samples,  22            

315 sputum  samples,  and  1  sample  of  pleural  fluid  mononuclear  cells  (PFMCs)  from  27               
316 severely  and  8  mildly  affected  patients.  Severity  was  classified  based  on  the  World               

317 Health  Organization  (WHO)  guidelines      
318 ( https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-1 ).  For  individual     

319 cell  types,  we  compared  the  expression  level  of  RefMap  genes  in  severe  patients               

320 versus  moderately  affected  patients  ( Methods ).  Compared  to  the  background           
321 transcriptome,  we  observed  that  RefMap  genes  are  relatively  lower  expressed  in  severe              

322 patients  in  corresponding  cell  types  than  in  moderate  patients  (FDR<0.01,  one-tailed             
323 Wilcoxon  rank-sum  test;   Fig.  3e ),  supporting  the  functional  significance  of  RepMap             

324 genes  in  severe  COVID-19.  As  a  replication  experiment,  we  carried  out  a  similar               

325 analysis  based  on  an  independent  COVID-19  scRNA-seq  dataset 22 ,  including  9  BALF             
326 samples  from  6  severe  patients  and  3  moderate  patients  ( Methods ).  The  lower              

327 expression  of  RefMap  genes  in  severe  patients  is  consistent  across  multiple  cell  types               
328 (FDR<0.01,  one-tailed  Wilcoxon  rank-sum  test;   Fig.  3f ).  Altogether,  these           

329 transcriptome-based  orthogonal  analyses  are  consistent  with  the  hypothesis  that           

330 identified   cell-type-specific   RefMap   genes   are   functionally   linked   to   COVID-19   severity.   

331 PULSE  analysis  of  rare  variants  enables  population-independent  prediction  of           
332 COVID-19   severity   

333 RefMap  utilizes  common  genetic  variation  profiled  in  GWAS.  Biological  dysfunction  can             

334 also  be  determined  by  rare  variants  and  therefore  we  assessed  whether  there  is  a                
335 significant  burden  of  severe-COVID-19-associated  rare  variants  within  RefMap  genes.           

336 First,  we  employed  a  standard  methodology  using  SKAT 50  rare-variant  burden  testing             
337 applied  to  whole-exome  sequencing  (WES)  data  from  the  GEN-COVID  cohort 51 ,            

338 including  non-elderly  patients  who  suffered  severe  COVID-19  requiring  respiratory           

339 support,  and  individuals  who  suffered  non-severe  COVID-19  not  requiring           
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340 hospitalization  ( Methods ).  No  individual  gene  is  enriched  with  significant  genetic  burden             
341 after  adjusting  for  multiple  testing  ( Supplementary  Fig.  4 ).  This  is  true  whether  we               

342 tested  genome-wide  or  only  for  RefMap  COVID-19  genes.  However,  for  one  subset  of               
343 cell-type-specific  RefMap  genes,  the  median   P -value  was  lower  than  expected:  NK  cells              

344 ( P <0.05,  permutation  test;   Fig.  4a ;   Methods ).  This  result  from  the  analysis  of  rare               

345 genetic  variation  in  an  independent  cohort  is  convergent  with  our  common  variant              
346 analysis,   highlighting   NK   cell   biology   as   a   critical   determinant   of   COVID-19   severity.   

347 Traditional  rare-variant  burden  testing  failed  to  identify  any  enrichment  of            

348 COVID-19-associated  variants  within  a  single  gene  although  there  is  significant            
349 enrichment  in  the  group  of  236  NK-cell  RefMap  genes.  This  suggests  that  traditional               

350 burden  testing  is  underpowered  when  applied  to  the  GEN-COVID  dataset.  We  decided              

351 to  develop  a  new  method  with  increased  sensitivity.  Here  we  present  PULSE              
352 ( p robabilistic  b u rden  ana l ysi s  based  on  functional   e stimation),  a  discriminative  Baysian            

353 network  that  integrates  functional  annotations  of  rare  variants  to  model  the  relationship              
354 between  genotype  and  phenotype  ( Fig.  4b ;   Methods ,   Supplementary  Notes ).  In            

355 particular,  PULSE  combines  multiple  predictions  of  functional  effects  for  different  types             
356 of  variants,  including  missense,  nonsense,  splicing-site,  and  small  insertion-deletion           

357 (indel)  mutations  ( Supplementary  Table  7 ).  After  aggregating  those  functional  scores            

358 for  individual  genes,  PULSE  learns  the  importance  of  different  annotations  and  genes              
359 from  the  training  data  and  maps  the  phenotype  from  the  genotype  in  a  bilinear  form                 

360 ( Fig.  4b ;   Methods ).  With  PULSE  as  a  discovery-by-prediction  strategy,  we  are  able  to               
361 (i)  predict  individual  phenotypes  from  personal  genotypes  and  (ii)  discover            

362 phenotype-associated   genes   by   model   interpretation.   

363 We  applied  PULSE  to  study  rare  genetic  variants  associated  with  COVID-19  severity              

364 based  on  the  GEN-COVID  cohort  of  whole-exome  sequencing  from  1,339  COVID-19             
365 patients  with  5  severity  gradings 52  ( Fig.  4b ,   Supplementary  Table  8 ;   Methods ).  After              

366 quality  controls  (QCs),  we  constructed  a  discovery  cohort  (training  dataset)  of             
367 non-elderly  European  (EUR)  adults  (age  >30  and  <60  years)  who  were  critically  ill               

368 (cases, n =109)  or  not  hospitalized  (controls,   n =269)  ( Methods ).  There  is  no  significant              

369 age  difference  between  cases  and  controls  after  filtration  ( P =0.29,  Wilcoxon  rank-sum             
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370 test;   Supplementary  Fig.  5 ).  We  then  performed  genome  annotation 53  and  feature             
371 engineering  ( Methods ),  where  only  rare  variants  (i.e.,  absent  from  the  EUR  cohort              

372 within  the  1000  Genomes  Project  Phase  3 54 )  in  autosomes  were  utilized  for  downstream               
373 analysis.  To  test  the  prediction  performance  of  PULSE,  we  first  performed  5-fold             

374 cross-validation  (CV)  based  on  the  GEN-COVID  discovery  cohort,  where  a  mean             

375 AUROC  (area  under  the  receiver  operating  characteristics)  of  0.631  was  achieved             
376 (SE=0.062;   Fig.  4c ).  This  demonstrates  the  predictability  of  COVID-19  severity  from             

377 personal  genomes.  The  AUROC  scores  (0.629±0.073)  of  a  logistic  regression  model             
378 built  from  patient  age  and  sex  information  are  comparable  to  the  PULSE  genetic  model                

379 ( Fig.  4c ).  However,  combining  scores  (by  averaging)  of  PULSE  and  age+sex  produced              

380 a  further  improvement  in  prediction  performance  (AUROC=0.653±0.072;   Fig.  4c ),           
381 demonstrating  that  host  genetics  is  relatively  independent  of  the  effect  of  age  and  sex                

382 on  disease  severity.  We  note  that  since  we  removed  the  age  bias  in  the  discovery                 
383 cohort  for  genetic  concentration,  the  largest  contribution  in  the  age+sex  model  came              

384 from  the  sex  information  (model  coefficients:  1.33±0.052  for  sex  versus  0.001±0.004  for              

385 age;   Supplementary  Fig.  6 ).  We  also  note  that  in  our  PULSE  model  only  autosomal                
386 variants   were   considered   to   remove   the   effect   of   sex   in   genetic   modelling.   

387 To  further  validate  the  prediction  power  of  PULSE,  we  analyzed  whole-genome             

388 sequencing  (WGS)  data  of  an  independent  cohort  from  the  Veterans  Health            
389 Administration  (VA),  consisting  of  590  COVID-19  patients  with  variable  disease  severity             

390 ( Fig.  4d ,  Supplementary  Table  9 ;   Methods ).  Extensive  QCs  (without  filtering  based  on              
391 ancestry)  resulted  in  571  genomes  ( Methods ).  Genome  annotation  and  feature            

392 engineering  were  conducted  as  for  the  GEN-COVID  cohort.  Similarly,  to  remove  the              

393 effect  of  age,  we  focused  on  non-elderly  adults  (age  >30  and  <65  years)  who  were                 
394 critically  ill  or  not  hospitalized,  yielding  243  samples  (24  cases  and  219  controls).  In  this                 

395 analysis,  we  relaxed  the  upper  threshold  of  age  from  60  to  65  years  to  include  more                  
396 samples  in  testing.  The  PULSE  model  trained  on  the  whole  GEN-COVID  cohort  was               

397 applied  to  predict  severity  within  the  VA  EUR  samples  (14  cases  versus  125  controls).                

398 We  found  that  PULSE  succeeded  in  predicting  severe  disease  solely  from  personal              
399 genomes   for   this   independent   cohort   with   an   AUROC   of   0.675   ( Fig.   4e ).   

  
14   

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258703doi: medRxiv preprint 

https://paperpile.com/c/fSkwfU/NKBd
https://paperpile.com/c/fSkwfU/jS8Z
https://doi.org/10.1101/2021.06.15.21258703


400 Next,  we  asked  if  the  prediction  accuracy  is  generalizable  across  different  populations.             
401 We  constructed  a  test  set  of  non-EUR  non-elderly  adults  (age  >30  and  <60  years)  that                 

402 passed  all  other  QC  criteria  within  the  GEN-COVID  cohort,  resulting  in  12  cases               
403 (critically  ill)  and  6  controls  (not  hospitalized).  The  PULSE  model  trained  on  EUR               

404 samples  was  then  applied  to  this  non-EUR  dataset,  yielding  AUROC  of  0.667,  which  is                

405 comparable  to  the  prediction  solely  based  on  age  and  sex  (AUROC=0.722;   Fig.  4e ).               
406 Combining  two  scores  further  increased  the  prediction  performance  (AUROC=0.799;           

407 Fig.  4e ).  Furthermore,  we  applied  the  same  trained  PULSE  model  to  predict  severe               
408 disease  for  African  (AFR)  individuals  (10  cases  versus  92  controls)  within  the  VA  cohort.                

409 Similarly,  we  discovered  that  PULSE  succeeded  in  the  cross-population  prediction  with             

410 an  AUROC  of  0.784  ( Fig.  4e ).  A  similar  result  was  observed  for  the  whole  VA  dataset                  
411 with  mixed  populations  (AUROC=0.716;   Fig.  4e ).  These  results  demonstrate  the            

412 prediction  power  of  PULSE  and  suggest  that  the  rare-variant  genetic  architecture  of              
413 COVID-19  severity  is  conserved  across  multiple  populations.  Importantly,  we  observed            

414 that  the  prediction  in  the  VA  cohort  based  on  just  age  and  sex  information  trained  on  the                   

415 GEN-COVID  cohort  is  inferior  to  PULSE  (AUROC=0.655,  0.474,  and  0.577  for  EUR,              
416 AFR,  and  all  samples,  respectively;   Fig.  4e ).  This  may  be  linked  to  the  different  sex                 

417 distribution  with  fewer  females  in  the  VA  cohort  ( Fig.  4d ,   Supplementary  Figs.  7   and                
418 8 ),  but  is  further  evidence  of  the  robustness  of  host  genetic  signals  in  determining                

419 COVID-19  severity  and  demonstrates  that  the  PULSE  prediction  is  independent  of  age              

420 and   sex.   

421 We  investigated  additional  performance  measures  including  sensitivity  and  specificity           

422 based  on  different  cutoffs.  Importantly,  although  the  specificity  scores  are  comparable             

423 between  PULSE  and  age+sex  models  cross  cutoffs  ( Supplementary  Fig.  9 ),  we             
424 discovered  that  PULSE  yielded  a  significantly  higher  sensitivity  (median  values:  0.857             

425 versus  0.688,  0.900  versus  0.525,  and  0.875  versus  0.560  for  EUR,  AFR,  and  all  VA                 
426 samples,  respectively;   Fig.  4f ).  High  sensitivity  is  important  for  the  clinical  application  of               

427 severity  prediction  to  guide  the  identification  of  at-risk  individuals.  Predictions  for  the              

428 GEN-COVID  non-EUR  samples  yielded  similar  sensitivity  and  specificity          
429 ( Supplementary   Fig.   10 ).   
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430 Common  and  rare  variant  analyses  of  severe  COVID-19  converge  on  NK  cell              
431 function  

432 The  trained  PULSE  model  assigns  a  weighting  to  individual  genes  as  a  measure  of                

433 association  between  gene  function  and  severe  COVID-19  ( Supplementary  Fig.  11 ;            
434 Methods ),  where  a  larger  weight  indicates  a  higher  gene  mutation  burden  in  severe               

435 patients.  To  test  for  the  convergence  between  our  common  and  rare  variant  analyses,               

436 we  compared  the  absolute  values  of  model  weights  for  RefMap  genes  per  cell  type  with                 
437 all  genes  considered  by  the  PULSE  model.  After  correcting  for  multiple  testing,  we               

438 concluded  that  for  all  cell  types,  RefMap  genes  tend  to  have  weights  with  larger                
439 absolute  values,  indicating  an  association  with  severe  COVID-19  (FDR<0.01,  one-tailed            

440 Wilcoxon  rank-sum  test;   Fig.  5a ).  Common  and  rare  genetic  variations  are  largely              

441 independent 55–57 ,  and  therefore,  this  convergence  of  common  and  rare  variant  signals             
442 indicates  shared  biology  underlying  severe  disease.  Among  all  cell  types,  club-cell             

443 RefMap  genes  are  the  most  enriched  with  PULSE  genes  (FDR<1e-05,   Z -score=5.33;             
444 Fig.  5a ).  Interestingly,  of  hematopoietic  cells,  NK  cell  genes  are  the  most  enriched  with                

445 PULSE  genes  (FDR=1.1e-03,   Z -score=3.16;   Fig.  5a ),  consistent  with  our  previous            
446 conclusion  that  NK  cells  are  an  essential  component  of  the  immune  response  against               

447 SARS-CoV-2.     

448 To  further  validate  the  importance  of  genes  captured  by  PULSE  for  severe  COVID-19,               

449 we  identified  657  genes  (referred  to  as  PULSE  COVID-19  genes)  based  on  model               
450 weights  in  the  top  5%  from  all  genes  ( Supplementary  Table  10 ).  We  re-examined  our                

451 SKAT  burden  analysis  results  for  the  GEN-COVID  cohort  and  observed  that  PULSE              
452 genes  are  significantly  enriched  with  severe-disease-associated  rare  variants  (median           

453 P <1e-5,  permutations  test).  Similar  enrichment  was  confirmed  based  on  an  independent             

454 rare-variant  burden  analysis  from  Regeneron 12 ,  where  the  PULSE  genes  are            
455 significantly  enriched  with  Regeneron  genes  implicated  in  the  analysis  of  severe             

456 COVID-19  versus  non-hospitalized  COVID-19  ( n =68  genes;   P =0.02,  OR=2.9,  Fisher’s           
457 exact   test;    Methods ).   

458 To  gain  further  insights  into  the  cell-type-specificity  of  PULSE  genes,  we  investigated              

459 their  expression  levels  in  healthy  lungs  per  cell  type.  We  confirmed  the  function  of                
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460 PULSE  genes  across  different  cell  types  by  observing  their  non-random  overlapping             
461 with  lung  snATAC-seq  peaks 33  (FDR<0.1,  permutation  test).  Furthermore,  the           

462 expression  levels  of  PULSE  genes  measured  by  scRNA-seq  were  examined,  where  we              
463 found  that  PULSE  genes  are  higher  expressed  in  B  cells,  club  cells,  lymphatics,  matrix                

464 fibroblast  1,  and  NK  cells  (FDR<0.1,  one-tailed  Wilcoxon  rank-sum  test;   Fig.  5b ).  This               

465 supports   the   functional   importance   of   PULSE   genes   in   lung   function.   

466 PULSE  genes  carry  a  higher  mutation  burden  in  severe  COVID-19  and  therefore  we               
467 hypothesized  that  loss  of  function  of  PULSE  genes  leads  to  severe  symptoms.  To               

468 validate  this,  we  analyzed  the  expression  levels  of  PULSE  genes  based  on  the               
469 scRNA-seq  data  of  COVID-19  patients 23 .  Consistent  with  our  hypothesis,  we  observed  a              

470 down-regulation  of  PULSE  genes  in  severe  disease  compared  to  moderate  disease             

471 across  B  cells,  ciliated  cells,  macrophages,  NK  cells,  and  T  cells  (FDR<0.1,  one-tailed               
472 Wilcoxon  rank-sum  test;   Fig.  5c ).  A  similar  analysis  in  another  cohort 22  led  to  the  same                 

473 conclusion  for  macrophages,  NK  cells,  and  T  cells  (FDR<0.1,  one-tailed  Wilcoxon            
474 rank-sum  test;   Fig.  5d ).  Our  transcriptome  study  demonstrates  the  functional  role  of              

475 PULSE  genes  in  severe  disease  across  multiple  cell  types.  Notably,  among  all  the  cell                
476 types  we  investigated,  only  NK  cells  are  consistently  associated  with  severe  COVID-19              

477 across  all  observations.  This  supports  the  conclusion  of  our  common  variant  analysis,              

478 suggesting   that   NK   cells   are   vital   determinants   of   COVID-19   severity.   

479 Systems  analysis  implicates  association  of  NK  cell  activation  with  COVID-19            
480 severity   

481 All  of  our  analyses  have  suggested  that  NK  cell  dysfunction  is  a  determinant  of                

482 COVID-19  severity.  To  obtain  a  comprehensive  landscape  of  NK  cell  biology  underlying              
483 severe  COVID-19,  we  examined  the  function  of  NK-cell  genes  identified  by  either              

484 RefMap  or  PULSE  (377  genes;   Supplementary  Table  11 ).  Indeed,  genes  do  not              

485 function  in  isolation 58,59  and  therefore,  rather  than  examining  individual  genes,  we             
486 mapped  NK-cell  genes  to  the  global  protein-protein  interaction  (PPI)  network  and  then              

487 inspected   functional   enrichment   of   COVID-19-associated   network   modules.     
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488 In  particular,  we  extracted  high-confidence  (combined  score  >700)  PPIs  from  STRING             
489 v11.0 60 ,  which  include  17,161  proteins  and  839,522  protein  interactions.  To  eliminate  the              

490 bias  of  hub  genes 61 ,  we  performed  the  random  walk  with  restart  algorithm  over  the  raw                 
491 PPI  network  to  construct  a  smoothed  network  based  on  edges  with  weights  in  the  top                 

492 5%  ( Supplementary  Table  12 ;   Methods ).  Next,  this  smoothed  PPI  network  was             

493 decomposed  into  non-overlapping  subnetworks  using  the  Leiden  algorithm 62 .  This           
494 process  yielded  1,681  different  modules  ( Supplementary  Table  13 ),  in  which  genes             

495 within  modules  are  densely  connected  but  sparsely  connected  with  genes  in  other              
496 modules.   

497 NK-cell  COVID-19  genes  were  mapped  to  individual  modules,  and  four  modules  were              

498 found  to  be  significantly  enriched  with  NK-cell  genes:  M237  ( n =471  genes;  FDR<0.1,              

499 hypergeometric  test;   Fig.  6a ),  M1164  ( n =396  genes;  FDR<0.1,  hypergeometric  test;            
500 Fig.  6b ),  M1311  ( n =14  genes;  FDR<0.1,  hypergeometric  test),  and  M1540  ( n =226             

501 genes;  FDR<0.1,  hypergeometric  test;   Fig.  6c )  ( Supplementary  Table  13 ).  We            
502 excluded  M1311  from  our  downstream  analysis  due  to  its  limited  size  and  lack  of                

503 functional   enrichment.   

504 Functionally,  M237,  M1164,  and  M1540  are  all  enriched  with  gene  expression  linked  to               
505 NK  cells  ( P <0.05,  Human  Gene  Atlas),  demonstrating  their  specificity  in  the  NK  cell               

506 function.  Moreover,  these  three  modules  relate  to  different  stages  of  NK  cell  activation.              

507 M237  is  enriched  with  GO/KEGG  terms  including  ‘mRNA  processing  (GO:0006397)’            
508 and  ‘Spliceosome’,  which  are  important  for  the  transcriptional  response  involved  in  NK              

509 cell  activation  (adjusted   P <0.1;   Fig.  6d ,   Supplementary  Tables  14  and   15 ).  M1164  is               
510 enriched  with  GO/KEGG  terms  linked  to  intracellular  signalling  (e.g.,  ‘regulation  of  small              

511 GTPase  mediated  signal  transduction  (GO:0051056)’),  including  pathways  (e.g.,  ‘Rap1          

512 signalling  pathway’)  key  for  NK  cell  activation  (adjusted   P <0.1; Fig.  6e ,   Supplementary              
513 Tables  14  and   15 ).  M1540  is  highly  enriched  with  GO/KEGG  terms  linked  to  type  I                 

514 interferon  signalling  (e.g.,  ‘type  I  interferon  signalling  pathway  (GO:0060337)’  and            
515 ‘Antigen  processing  and  presentation’)  (adjusted   P <0.1;   Fig.  6f ,   Supplementary  Tables            
516 14  and   15 ).  In  summary,  the  functional  enrichment  of  M237,  M1164,  and  M1540  genes                

517 includes  extracellular,  cytoplasmic,  and  nuclear  processes  necessary  for  NK  cell            
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518 activation;  thus  the  genetic  architecture  we  have  discovered  places  NK  cell  activation              

519 upstream   in   determining   severe   COVID-19.   

520 To  further  characterize  the  function  of  the  identified  NK-cell  modules,  we  investigated              

521 the  expression  of  module  genes  based  on  scRNA-seq  data  from  healthy  and  diseased               
522 lung  tissues.  Genes  in  all  three  modules  are  relatively  over-expressed  in  NK  cells  of                

523 healthy  lungs 33  than  the  background  transcriptome  (FDR<0.01,  one-tailed  Wilcoxon           

524 rank-sum  test;   Fig.  6g ).  In  contrast,  in  lung  tissues  infected  with  SARS-CoV-2,  we               
525 observed  a  down-regulation  of  M237  and  M1540  genes  in  NK  cells  of  severe  disease 23                

526 (FDR<0.01,  one-tailed  Wilcoxon  rank-sum  test;   Fig.  6h ).  M1164  genes  are  also             
527 down-regulated  in  NK  cells  from  severe  COVID-19  patients  in  another  cohort 22             

528 (FDR<0.01,  one-tailed  Wilcoxon  rank-sum  test;   Fig.  6i )  along  with  M237  and  M1540              

529 genes.  These  results  are  consistent  with  our  previous  findings  and  functionally  link  the               
530 modules   we   have   detected   to   NK   cell   biology   in   the   context   of   severe   COVID-19.   

531 DISCUSSION   

532 The  COVID-19  pandemic  is  a  global  health  crisis 1 .  Vaccination  efforts  have  led  to  early                

533 successes 63 ,  but  the  prospect  of  evolving  variants  capable  of  immune-escape 64            
534 highlights  the  importance  of  efforts  to  better  understand  the  COVID-19  pathogenesis             

535 and  to  develop  effective  treatments.  Host  genetic  determinants  of  disease  severity  have              
536 been  investigated 5–12 ,  but  the  findings  and  functional  interpretations  so  far  have  been              

537 limited 13 .  In  contrast,  studies  of  the  immune  response  accompanying  severe            

538 COVID-19 16–19  have  struggled  to  establish  causality  leading  to  a  diverse  array  of              
539 candidates  and  little  consensus.  Our  contribution  is  an  integrated  analysis  of  common              

540 and  rare  host  genetic  variation  causally  linked  to  severe  COVID-19  in  non-elderly              
541 adults,  together  with  biological  interpretations  via  single-cell  omics  profiling  of  lung             

542 tissue,   and   identification   of   >1,000   risk   genes.     

543 Our  study  of  common  and  rare  genetic  variation  associated  with  severe  COVID-19              
544 converges  on  common  biology,  despite  non-overlapping  datasets  and  orthogonal           

545 analytical  methods.  We  have  achieved  this  because  we  have  developed  effective             
546 machine  learning  methods  which  offer  advantages  over  traditional  methods:  RefMap  to             
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547 integrate  common  variants  with  epigenetic  profiles 32 ,  and  PULSE  for  rare  variant             
548 discovery  by  prediction.  The  evolution  of  clinical  COVID-19  involves  the  interaction  of              

549 multiple  viral  and  host  factors  in  what  is  likely  to  be  a  nonlinear  system;  our  work                  
550 supports  this  proposal  and  suggests  that  traditional  methods  may  be  inadequate  given              

551 current  sample  sizes.  This  study  is  the  first  time  we  have  presented  PULSE  and  we                 

552 have  demonstrated  a  significant  power  advantage  compared  to  standard  methodology.            
553 Both   methods   are   ready   for   application   in   other   disease   areas.   

554 Our  network  analysis  highlights  NK  cell  activation  through  type  I  interferon  signalling              
555 ( Fig.  6f )  as  a  key  upstream  determinant  of  COVID-19  severity.  This  links  to  previous                

556 literature  describing  a  delayed  interferon  response  as  a  precursor  of  later             

557 hyperinflammation  associated  with  potentially  fatal  ARDS 27 , 65 .  NK  cells  can  also  be             
558 activated  via  MHC  signalling  through  NKG2  proteins.  The  CD94/NKG2C/HLA-E  axis            

559 has  been  shown  to  be  key  to  the  NK  antiviral  response 66  but  so  has  the  recognition  of                   
560 induced-self  antigens  via  the  NKG2D  receptor 67 .  Deletions  of  NGK2C  have  previously             

561 been  linked  to  severe  COVID-19 28 ,  whereas  both  our  Mendelian  randomization  and             

562 transcriptome  analyses  highlight  a  role  for  NKG2D+  NK  cells.  We  suggest  that  all  three                
563 mechanisms  for  NK  cell  activation  are  critical  to  the  host  immune  response  to               

564 SARS-CoV-2.  Indeed,  a  recent  study  has  revealed  that  autoantibodies  which  impair  NK              
565 cell  activation  are  associated  with  severe  COVID-19,  and  that  manipulating  the             

566 activation  of  NK  cells  in  a  mouse  model  resulted  in  a  significantly  higher  viral  burden 29 .                 

567 In  the  cancer  field,  NK  cell  stimulation  has  been  postulated  as  a  therapeutic  strategy 68 .                
568 We  propose  that  this  strategy  could  protect  at-risk  individuals  in  future  waves  of               

569 COVID-19.     

570 It  is  important  to  note  that  our  analyses  also  identified  genetic  risk  of  severe  COVID-19                 
571 associated  with  non-NK  cell  types,  including  other  immune  cells  and  epithelial  cells  such               

572 as  AT2  cells,  which  is  consistent  with  the  previous  literature 69 .  Indeed,  the  PULSE               
573 prediction  is  based  on  a  total  genetic  architecture  and  not  limited  to  NK  cell                

574 genomics. Future  work  will  determine  how  these  other  cell  types  are  essential  and  how               

575 they   interact   with   NK   cell   activation.   
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576 We  present  a  validated  prediction  of  COVID-19  severity  derived  entirely  from  host              
577 characteristics,  including  age,  sex,  and  genetics.  The  average  AUROC  of  ~0.72             

578 outperforms  all  comparable  strategies 9 ;  and  we  achieve  a  very  high  sensitivity  of  ~85%               
579 with  a  specificity  >50%.  Our  prediction  could  be  applied  in  advance  of  infection  or  even                 

580 exposure,  and  thus  has  the  potential  to  be  very  useful  clinically.  We  anticipate  future  use                 

581 and  refinement  of  our  prediction  model  to  guide  administration  of  post-exposure             
582 prophylaxis  to  at-risk  individuals,  in  a  similar  manner  to  current  standard  practice  for               

583 HIV 70 .     

584 Our  analyses  are  based  on  the  largest  available  datasets  to  date  but  increasing  sample                

585 size  could  improve  the  precision  of  our  discovery  and  prediction.  In  addition,  the  vast                

586 majority  of  our  data  was  taken  from  populations  and  at  times  when  recently  identified                
587 SARS-CoV-2  variants  were  not  prevalent  in  the  population  (before  November  2020,             

588 https://covariants.org/per-country ).  It  is  unlikely,  but  not  impossible,  that  the  NK  cell             
589 responses  we  have  identified  as  essential  determinants  of  severe  COVID-19  are  not              

590 applicable   to   new   variants.     

591 In  conclusion,  we  have  uncovered  a  comprehensive  genetic  architecture  of  severe            
592 COVID-19  integrated  with  single-cell-resolution  biological  functions.  Both  common  and           

593 rare  variant  analyses  have  highlighted  NK  cell  activation  as  a  potential  key  factor  in                
594 determining  disease  severity.  Our  novel  rare  variant  method  has  also  achieved  age-,              

595 sex-,  and  ancestry-independent  prediction  of  COVID-19  severity  from  personal           

596 genomes.   

597 FIGURES   

598 Figure  1.  Common  variant  analysis  of  COVID-19  severity  integrated  with  lung             
599 single-cell   multiomics.   

600 a ,  Schematic  of  the  study  design  for  fine-mapping  cell-type-specific  genes  from             

601 COVID-19  GWAS  (Panel  1).  The  diagram  of  the  RefMap  model  is  shown  in  Panel  2,                 
602 where  grey  nodes  represent  observations,  green  nodes  are  local  hidden  variables,  and              

603 pink  nodes  indicate  global  hidden  variables  ( Methods ).  Cell-type-specific  RefMap           
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604 genes  are  mapped  using  single-cell  multiomic  profiling  (Panel  3).  Heritability  (Panel  4),              
605 Mendelian  randomization  (Panel  5),  and  transcriptome  analysis  (Panel  6)  validate  the             

606 functional  importance  of  RefMap  genes,  particularly  for  NK  cells,  in  severe  COVID-19.              
607 b ,  Total  number  and  number  of  unique  genomic  regions  containing  genetic  variation              

608 associated  with  severe  COVID-19  for  different  cell  types.   c ,  Total  number  and  number  of                

609 unique  genes  implicated  by  genetic  variation  associated  with  severe  COVID-19  for             
610 different  cell  types.   d ,  Fraction  of  unique  genomic  regions  and  genes  associated  with               

611 severe  COVID-19  for  major  cell  types.   e ,  Similarity  between  different  cell  types              
612 quantified  by  the  overlap  of  RefMap  genes.  Gene  set  overlapping  was  calculated  by  the                

613 Jaccard  index.   f ,  RefMap  regions  overlap  significantly  with  COVID-19-associated           

614 genetic  variation  in  an  independent  COVID-19  GWAS  study.  cCRE:  candidate            
615 cis-regulatory   element.   *:    P <0.05 .   

616 Figure  2.  Severe-COVID-19-associated  common  variants  are  linked  to  NK  cell            
617 function.   

618 a ,  Heritability  enrichment  estimated  by  LDSC  for  different  cell  types.  Enrichment  was              

619 calculated  as  the  proportion  of  total  SNP-based  heritability  adjusted  for  SNP  number.   b ,               
620 Proportion  of  SNP-based  heritability  associated  with  risk  genes  identified  using  RefMap             

621 or  conventional  methodology.   c ,   d ,   e ,  Significant  Mendelian  randomization  results  for             
622 three  exposures  linked  to  severe  COVID-19,  including  blood  counts  of  ( c )  CD335+              

623 CD314-,  ( d )  CCR7-  CD314-,  and  ( e )  CD314+  NK  cells.   f ,  Sensitivity  analyses  and               

624 robust  tests  for  MR  analyses  ( Methods ).   g ,  Comparative  gene  expression  analysis  of              
625 NK-cell  RefMap  genes  in  NKG2D+  and  NKG2D-  NK  cells.  Fold  change  was  calculated               

626 as  the  ratio  of  gene  expression  levels  in  NKG2D+  NK  cells  to  NKG2D-  NK  cells.  The                  
627 transcriptome  was  defined  by  all  the  expressed  genes  (with  at  least  one  UMI  (unique                

628 molecular  identifier))  in  NK  cells.  Violin  plots  show  the  distributions  of  fold  change               

629 values  within  each  group,  and  boxplots  indicate  the  median,  interquartile  range  (IQR),              
630 Q1−1.5×IQR,  and  Q3+1.5×IQR.  The  red  dashed  line  denotes  the  median  value  of  fold               

631 change   distribution   for   the   transcriptome.   
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632 Figure  3.  Functional  enrichment  and  transcriptome  analyses  of  RefMap  COVID-19            
633 genes.   

634 a ,  Gene  Ontology  (GO)  terms  that  are  significantly  enriched  in  cell-type-specific  RefMap              
635 gene  lists  corresponding  to  hematopoietic  cell  types;  only  terms  with  adjusted   P <0.05,              

636 OR>3,  and  character  number<60  are  visualized.   b ,  KEGG  Pathways  that  are             

637 significantly  enriched  in  cell-type-specific  RefMap  gene  lists  corresponding  to           
638 hematopoietic  cell  types;  only  terms  with  adjusted   P <0.05,  OR>5,  and  character             

639 number<50  are  visualized.   c ,  Gene  expression  analysis  of  RefMap  genes  across             
640 different  cell  types  in  healthy  lungs.  The  transcriptome  was  defined  as  the  total  set  of                 

641 expressed  genes  for  each  cell  type  ( Methods ).  Violin  plots  show  the  distributions  of  log                

642 expression  levels  within  each  group,  and  point  plots  indicate  the  median  and  IQR.   d ,                
643 Overlap  between  cell-type-specific  RefMap  regions  and  H3K27ac  and  H3K4me3           

644 ChIP-seq  peaks  from  ENCODE  lung  and  immune  cell  samples.   Z -scores  calculated  by              
645 regionR 49  (1,000  permutations)  were  normalized  into  the  0-1  range  for  visualization.   e ,   f ,               

646 Comparative  gene  expression  analysis  of  cell-type-specific  RefMap  genes  in  severe            

647 COVID-19  patients  versus  moderately  affected  patients  based  on  scRNA-seq  datasets            
648 from  ( e )  Ren  et  al.  and  ( f )  Liao  et  al.,  respectively.  The   Z -score  of  Wilcoxon  rank-sum                  

649 test  was  used  to  indicate  the  gene  expression  change  between  severe  and  moderate               
650 patient  groups,  where  a  positive  value  means  higher  gene  expression  in  severe              

651 patients.  The  Benjamini-Hochberg  (BH)  procedure  was  used  to  calculate  FDRs            

652 throughout  the  study.  Violin  plots  show  the  distribution  of  gene  expression  changes              
653 within  each  group,  and  boxplots  indicate  the  median,  IQR,  Q1−1.5×IQR,  and             

654 Q3+1.5×IQR.   *:   FDR<0.1.   +:   FDR<0.01.   

655 Figure  4.  Rare  variant  analysis  informs  individual  risk  of  critical  illness  of              
656 COVID-19.   

657 a ,  Enrichment  analysis  of  cell-type-specific  RefMap  COVID-19  genes  with  rare  variants             
658 using  SKAT  burden  testing.  The  red  dashed  line  indicates   P =0.05.   b ,  Schematic  of  the                

659 study  design  for  our  rare  variant  analysis  based  on  PULSE.  We  examine  two               
660 independent  cohorts  in  which  rare  variants  were  profiled  by  different  technologies:             
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661 whole-exome  sequencing  (WES)  and  whole-genome  sequencing  (WGS)  (Panel  1).           
662 Variants  are  annotated  using  ANNOVAR  (Panel  2)  and  encoded  as  input  for  the  PULSE                

663 model  (Panel  3,   Methods ),  where  grey  nodes  are  observations  and  pink  nodes              
664 represent  hidden  variables.  PULSE  is  trained  to  differentiate  cases  and  controls  (Panel              

665 4),  where  the  gene  weights  are  useful  for  gene  discovery  (Panel  5).  Functional               

666 characterization  of  risk  genes  is  performed  based  on  scRNA-seq  and  PPIs  (Panel  6).   c ,                
667 Receiver  operating  characteristic  (ROC)  curves  of  different  models,  including  PULSE,            

668 age+sex,  and  integrative  models,  in  the  5-fold  cross-validation.  Solid  lines  represent  the              
669 mean  values,  and  the  grey  area  indicates  the  standard  errors. d ,  Summary  statistics  of                

670 the  VA  COVID-19  cohort.   e ,  AUROC  (area  under  the  receiver  operating  characteristics)              

671 scores  of  predictions  in  multiple  test  datasets.  Prediction  performance  is  shown  for              
672 PULSE,  age+sex,  and  integrative  models.   f ,  Comparison  of  prediction  sensitivity            

673 between   PULSE   and   age+sex   models.   EHRs:   electronic   health   records.   

674 Figure   5.   Transcriptome   analysis   of   PULSE   COVID-19   genes.   

675 a ,  Analysis  of  convergence  between  PULSE  and  RefMap  COVID-19  genes.  The             

676 Z -scores  were  calculated  per  cell-type  by  Wilcoxon  rank-sum  test  of  the  difference  in               
677 PULSE  weights  between  RefMap  genes  and  the  background  transcriptome.  Non-zero            

678 Z -scores  indicate  biological  overlap  between  common  and  rare  variant  architectures            
679 detected  by  RefMap  and  PULSE,  respectively.   b ,  Gene  expression  analysis  of  PULSE              

680 genes  across  different  cell  types  in  healthy  lungs.  The  transcriptome  was  defined  as  the                

681 total  set  of  expressed  genes  for  each  cell  type  ( Methods ).  Violin  plots  show  the                
682 distributions  of  log  expression  levels  within  each  group,  and  point  plots  indicate  the               

683 median  and  IQR.   c ,   d ,  Comparative  gene  expression  analysis  of  cell-type-specific             
684 PULSE  genes  in  severe  COVID-19  patients  versus  moderate  patients  based  on             

685 scRNA-seq  datasets  from  ( c )  Ren  et  al.  and  ( d )  Liao  et  al.,  respectively.  The   Z -score  of                  

686 Wilcoxon  rank-sum  test  was  used  to  indicate  the  gene  expression  change  between              
687 severe  and  moderate  patient  groups.  Violin  plots  show  the  distribution  of  gene              

688 expression  changes  within  each  group,  and  boxplots  indicate  the  median,  IQR,             
689 Q1−1.5×IQR,   and   Q3+1.5×IQR.   *:   FDR<0.1.   +:   FDR<0.01.   
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690 Figure  6.  Network  analysis  of  NK-cell  genes  identified  in  common  and  rare  variant               
691 analyses.   

692 a ,   b ,   c ,  Three  PPI  network  modules,  including  ( a )  M237,  ( b )  M1164,  and  ( c )  M1540,  are                  

693 significantly  enriched  with  NK-cell  genes  identified  in  either  common  or  rare  variant              
694 analysis.  Blue  nodes  represent  NK-cell  genes  and  yellow  nodes  indicate  other  genes              

695 within  each  module.  Edge  thickness  is  proportional  to  STRING  confidence  score  (>700).              

696 d ,   e ,   f ,  Gene  Ontology  (GO)  terms  that  are  significantly  enriched  in  modules  ( d )  M237,                 
697 ( e )  M1164,  and  ( f )  M1540.  Selected  terms  are  shown  for  visualization  and  the  complete                

698 lists  can  be  found  in   Supplementary  Tables  14  and   15 .   g ,  Gene  expression  analysis  of                 
699 module  genes  in  NK  cells.  The  transcriptome  was  defined  as  the  total  set  of  expressed                 

700 genes  in  NK  cells  ( Methods ).  Violin  plots  show  the  distributions  of  log  expression  levels                

701 within  each  group,  and  boxplots  indicate  the  median,  IQR,  Q1−1.5×IQR,  and             
702 Q3+1.5×IQR.  The  red  dashed  line  indicates  the  median  expression  level  of  the              

703 transcriptome.   h,  i,   Comparative  gene  expression  analysis  of  module  genes  in  severe              
704 COVID-19  patients  versus  moderate  patients  based  on  scRNA-seq  datasets  from  ( h )             

705 Ren  et  al.  and  ( i )  Liao  et  al.,  respectively.  The   Z -score  of  Wilcoxon  rank-sum  test  was                  
706 used  to  indicate  the  gene  expression  change  between  severe  and  moderate  patient              

707 groups.  Violin  plots  show  the  distribution  of  gene  expression  changes  within  each              

708 group,  and  boxplots  indicate  the  median,  IQR,  Q1−1.5×IQR,  and  Q3+1.5×IQR.  The  red              
709 dashed  line  indicates  the  median  expression  change  of  the  transcriptome.  +:  FDR<0.01.              

710 GOBP:   gene   ontology   biological   process.     
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711 METHODS   

712 The   RefMap   model   

713 Allele   Z -scores  were  calculated  as   Z = b / se ,  where   b  and   se  are  effect  size  and  standard                 

714 error,  respectively,  as  reported  by  the  COVID-19  GWAS 7  (COVID-19  Host  Genetics             

715 Initiative,  Release  5,  phenotype  definition  A2,  EUR  only)  where  the  sample  age,  sex,              
716 and  ancestry  information  were  included  as  covariates.  Given   Z -scores  and  lung             

717 snATAC-seq  peaks,  we  aim  to  identify  functional  genomic  regions  in  which  the   Z -score               
718 distribution  is  significantly  shifted  from  the  null  distribution.  Suppose  we  have   K  1Mb               

719 linkage  disequilibrium  (LD)  blocks,  where  each  LD  block  contains   J k  ( k = 1 ,  ...,   K )  1kb                

720 regions  and  each  region  harbors   I j,k  ( j = 1 ,  ...,   J k ,   I j,k >0)  SNPs,  the   Z -scores  follow  a                 
721 multivariate   normal   distribution,   i.e.,   

722 ,   (1)   

723 in  which  the   Z -score  of  the   i -th  SNP  in  the   j -th  region  of  the   k -th  block  is  denoted  as   z i,j,k                      

724 ( i = 1 ,   ...,    I j,k )   and    u k    are   the   effect   sizes   that   can   be   expressed   as   

725 .   (2)   

726 In  addition,   in  Eq.  (1)  represents  the  in-sample  LD  matrix  comprising  of  the                

727 pairwise  Pearson  correlation  coefficients  between  SNPs  within  the   k -th  block,  where   I k  is               

728 the  total  number  of  SNPs  calculated  by  .  Here,  since  we  have  no  access  to                 

729 the  individual-level  data,  we  used  EUR  samples  from  the  1000  Genomes  Project              

730 (Phase  3)  to  estimate  ,  yielding  the  out-sample  LD  matrix.  A  modified  Cholesky               
731 algorithm 71  was  used  to  get  a  symmetric  positive  definite  (SPD)  approximation  of  the  LD               

732 matrix.   

733 Further,  we  assume   u i,j,k  ( i = 1 ,  ...,   I j,k )  are  independent  and  identically  distributed  (i.i.d.),               
734 following   a   normal   distribution   given   by   

735 ,   (3)   

736 where   the   precision     follows   a   Gamma   distribution,   i.e.,   
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737 .   (4)   

738 Moreover,  to  characterize  the  shift  of  the  expectation  in  Eq.  (3)  from  the  null  distribution,                 

739 we   model    m j,k    by   a   three-component   Gaussian   mixture   model   given   by   

740
,   (5)   

741 where   the   precisions   follow   

742 ,   (6)   

743 and   v -1  and   v +1  are  non-negative  variables  measuring  the  absolute  values  of  effect  size                

744 shifts   for   the   negative   and   positive   components,   respectively.   

745 To  impose  non-negativity  over   v -1  and   v +1 ,  we  adopt  the  rectification  nonlinearity              

746 technique   proposed   previously 72 .   In   particular,   we   assume    v -1    and    v +1    follow   

747 ,   (7)   

748 ,   (8)   
749 in  which  the  rectified  Gaussian  distribution  is  defined  via  a  dumb  variable.  In  particular,                

750 we   first   define    v -1    and    v +1    by   

751 ,   (9)   

752 ,   (10)   

753 which  guarantees  that   v -1  and   v +1  are  non-negative.  The  dump  variable   r -1  and   r +1  follow                 
754 the   Gaussian   distributions   given   by   

755 ,   (11)   

756 ,   (12)   

757 where     and     follow   the   Gaussian-Gamma   distributions,   i.e.,   

758 ,   (13)   

759 .   (14)   
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760 The  indicator  variables  in  Eq.  (5)  denote  whether  that  region  is  disease-associated  or               

761 not.  Indeed,  we  define  the  region  to  be  disease-associated  if   or  ,  and                

762 to  be  non-associated  otherwise.  To  simplify  the  analysis,  we  put  a  symmetry  over                

763 and   ,   and   define   the   distribution   by   

764 .   (15)   

765 Furthermore,   the   probability   parameter     in   Eq.   (15)   is   given   by   

766 ,   (16)   

767 where   is  the  sigmoid  function,   is  the  vector  of  epigenetic  features  for  the   j -th                  

768 region  in  the   k -th  LD  block,  and  the  weight  vector   w  follows  a  multivariate  normal                 
769 distribution,   i.e.,   

770 ,   (17)   
771 and     follows   

772 .   (18)   

773 In  this  study,  the  epigenetic  feature   was  calculated  as  the  overlapping  ratios  of  that                 
774 region  with  the  snATAC-seq  peaks  detected  in  any  of  the  cell  types  in  healthy  human                 

775 lungs.   

776 Based  on  the  model  defined  in  Eqs.  (1)  to  (18),  we  are  interested  in  calculating  the                  
777 posterior  probability   p ( T   |   Z ,   S ),  where  the  mean-field  variational  inference  (MFVI) 73  was               

778 adopted  to  solve  the  intractability.  More  technical  details,  including  a  coordinate             

779 ascent-based   inference   algorithm,   can   be   found   in   our   previous   work 32 .   

780 In  this  study,  we  ran  the  MFVI  algorithm  per  chromosome  to  accelerate  the               

781 computation.  The   Q + -  and   Q - -scores  were  defined  as   and  ,             

782 respectively,  and  we  also  defined  the   Q -score  as   Q = Q + + Q - .  RefMap  regions  were              
783 identified   by    Q + -   or    Q - -score   >0.95.   

784 Mapping   cell-type-specific   genes   from   RefMap   regions   
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785 For  each  cell  type  within  lung  tissue,  we  defined  cell-type-specific  RefMap  regions  as               
786 the  overlap  between  RefMap  regions  and  the  total  set  of  snATAC-seq  peaks  detected  in                

787 that  cell  type  ( Supplementary  Table  1 ).  Cell-type-specific  RefMap  genes  were  then             
788 identified  if  the  extended  gene  body  (i.e.,  the  region  up  to  10kb  either  side  of  the                  

789 annotated  gene  body)  overlapped  with  any  of  the  cell-type-specific  regions.  To  get  the              

790 final  gene  lists,  RefMap  genes  were  further  filtered  based  on  their  expression  levels.  In                
791 particular,  with  the  lung  snRNA-seq  data 33 ,  we  defined  expressed  genes  in  each  cell               

792 type  as  those  with  Seurat 74  log-normalized  value>0.6931.  In  addition,  we  note  that  there               
793 are  non-adult  samples  (~30  weeks  gestation  and  ~3  years)  sequenced  in  the  single  cell                

794 profiling  data 33 .  To  remove  the  bias  towards  lung  development,  we  first  calculated  the               

795 fold  change  of  gene  expression  levels  between  the  adult  sample  (~30  years)  and               
796 non-adult  ones,  and  defined  non-developmental  genes  (nDG)  as  those  with  FC>1.5.             

797 Only  RefMap  genes  that  were  identified  as  expressed  and  non-developmental  in  each              
798 cell   type   were   kept   for   downstream   analysis   ( Supplementary   Table   1 ).   

799 Validation   of   RefMap   COVID-19   regions   in   the   23andMe   dataset   

800 We  calculated  the  overlap  of  total  RefMap  regions  and  of  cell-type-specific  RefMap              

801 regions  with  genomic  regions  shown  to  contain  COVID-19-associated  SNPs  ( P <1e-04)            
802 based  on  the  GWAS  of  an  independent  cohort  recruited  by  23andMe 5 .  To  determine               

803 whether  the  observed  overlap  is  statistically  significant,  we  examined  the  average             

804 overlap  with  ten  sets  of  control  regions  of  equivalent  length  to  RefMap  regions.  Control                
805 regions   were   +/-1Mb-5Mb   distant   from   the   RefMap   regions 75 .   

806 Heritability   analysis   

807 We  used  LD  score  regression  (LDSC) 34  to  calculate  overall  heritability  for  severe              

808 COVID-19  (A1),  hospitalized  COVID-19  (B2),  and  COVID-19  overall  (C2),  respectively.            
809 Heritability  partitioning  within  genes  identified  by  traditional  methods  and  within            

810 cell-type-specific  RefMap  genes  was  performed  as  previously  described 76 .  Briefly,  for  all             
811 gene  lists,  we  examined  the  proportion  of  total  SNP-based  heritability  carried  by  SNPs               

812 +/-100kb  from  the  transcription  start  site  (TSS)  of  each  gene  in  the  list.  Enrichment  was                 
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813 calculated  by  comparing  the  ratio  of  partitioned  heritability  to  the  quantity  of  genetic               
814 materials.   

815 Mendelian   randomization   

816 In  total,  46  GWAS  measures  of  NK  cell  subtypes  were  identified  from  the  IEU  Open                 
817 GWAS  Project,  including  "prot-a-180",  "met-b-124",  "met-b-245",  "met-b-242",         

818 "prot-c-5244_12_3",  "met-b-237",  "met-b-258",  "prot-a-1669",  "prot-c-2917_3_2",       

819 "met-b-246",  "prot-a-1671",  "met-b-249",  "met-b-140",  "met-b-240",  "prot-a-3159",        
820 "prot-c-5104_57_3",  "prot-c-3056_11_1",  "prot-a-13",  "prot-a-3160",  "met-b-123",       

821 "met-b-250",  "met-b-239",  "met-b-120",  "met-b-154",  "prot-a-3162",  "met-b-247",        
822 "met-b-251",  "met-b-238",  "met-b-243",  "prot-a-2487",  "met-b-244",  "prot-c-2734_49_4",        

823 "met-b-153",  "prot-a-3161",  "prot-c-3003_29_2",  "met-b-248",  "prot-a-1674",       

824 "prot-a-1675",  "met-b-152",  "met-b-122",  "met-b-121",  "prot-a-1670",       
825 "prot-c-5424_55_3",  "met-b-252",  "prot-a-3233"  and  "met-b-241" 37,77,78 .  Exposure  SNPs         

826 or  instrumental  variables  (IVs)  are  chosen  based  on  an  arbitrary   P -value  cutoff 79,80 .  A               
827 cutoff  that  is  too  low  will  lose  informative  instruments,  but  a  cutoff  that  is  too  high  could                   

828 introduce  non-informative  instruments.  We  chose  to  set  the  cutoff  at  5e-06  in  line  with                
829 our  previous  work 81 .  We  employed  a  series  of  sensitivity  analyses  to  ensure  that  our                

830 analysis  was  not  confounded  by  invalid  IVs.  Identified  SNPs  were  clumped  for              

831 independence  using  PLINK  clumping  in  the  TwoSampleMR  tool 82 .  A  stringent  cutoff  of              
832 R 2 ≤0.001  and  a  window  of  10,000kb  were  used  for  clumping  within  a  European               

833 reference  panel.  Where  SNPs  were  in  LD,  those  with  the  lowest   P -value  were  retained.                
834 SNPs  that  were  not  present  in  the  reference  panel  were  excluded.  Where  an  exposure                

835 SNP  was  unavailable  in  the  outcome  dataset,  a  proxy  with  a  high  degree  of  LD  ( R 2 ≥0.9)                  

836 was  identified  in  LDlink  within  a  European  reference  population 83 .  Where  a  proxy  was               
837 identified  to  be  present  in  both  datasets,  the  target  SNP  was  replaced  with  the  proxy  in                  

838 both  exposure  and  outcome  datasets  in  order  to  avoid  phasing  issues 84 .  Where  a  SNP                
839 was  not  present  in  both  datasets  and  no  SNP  was  available  in  sufficient  LD,  the  SNP                  

840 was  excluded  from  the  analysis.  The  effects  of  SNPs  on  outcomes  and  exposures  were                

841 harmonized  in  order  to  ensure  that  the  beta  values  were  signed  with  respect  to  the                 
842 same  alleles.  For  palindromic  alleles,  those  with  minor  allele  frequency  (MAF)  >  0.42               
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843 were  omitted  from  the  analysis  in  order  to  reduce  the  risk  of  errors  due  to  strand                  
844 issues 84 .   

845 The  MR  measure  with  the  greatest  power  is  the  inverse-variance  weighted  (IVW)              

846 method,  but  this  is  contingent  upon  the  exposure  IV  assumptions  being  satisfied   85 .  With                
847 the  inclusion  of  a  large  number  of  SNPs  within  the  exposure  IV,  it  is  possible  that  not  all                    

848 variants  included  are  valid  instruments  and  therefore,  in  the  event  of  a  significant  result,                

849 it  is  necessary  to  include  a  range  of  robust  methods  which  provide  valid  results  under                 
850 various  violations  of  MR  principles  at  the  expense  of  power 86 .  Robust  methods  applied               

851 in  this  study  include  MR-Egger,  MR-PRESSO,  weighted  median,  weighted  mode,  and             
852 MR-Lasso.   

853 With  respect  to  the  IVW  analysis,  a  fixed-effects  (FE)  model  is  indicated  in  the  case  of                  

854 homogeneous  data,  whilst  a  multiplicative  random  effects  (MRE)  model  is  more  suitable              
855 for  heterogeneous  data.  Burgess  et  al.  recommended  that  an  MRE  model  be              

856 implemented  when  using  GWAS  summary  data  to  account  for  heterogeneity  in             

857 variant-specific  causal  estimates 86 .  In  the  interest  of  transparency,  we  calculated  both             
858 results   but   present   the   MRE   in   the   text.   

859 MR  analyses  should  include  evaluation  of  exposure  IV  strength.  In  order  to  achieve  this,                

860 we  provided  the   F -statistic,  MR-Egger  intercept,  MR-PRESSO  global  test,  Cochran's   Q             
861 test,  and   I 2  for  our  data.  The   F -statistic  is  a  measure  of  instrument  strength  with  >10                  

862 indicating  a  sufficiently  strong  instrument 87 .  We  provided   F -statistics  for  individual            

863 exposure  SNPs  and  the  instrument  as  a  whole.  Cochran's   Q  test  is  an  indicator  of                 
864 heterogeneity  in  the  exposure  dataset  and  serves  as  a  useful  indicator  that  horizontal               

865 pleiotropy  is  present  as  well  as  directing  decisions  to  implement  FE  or  MRE  IVW                
866 approaches 88 .  The  MR-Egger  intercept  test  determines  whether  there  is  directional            

867 horizontal  pleiotropy.  The  MR-PRESSO  global  test  determines  if  there  are  statistically             

868 significant  outliers  within  the  exposure-outcome  analysis 89 .   I 2   was  calculated  as  a             
869 measure  of  heterogeneity  between  variant  specific  causal  estimates,  with  a  low   I 2              

870 indicating  that  Egger  is  more  likely  to  be  biased  towards  the  null 90 .  Finally,  we  performed                 
871 a  leave-one-out  analysis  using  the  method  of  best  fit  for  each  exposure  SNP  within  the                 
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872 IV  in  order  to  determine  if  any  single  variants  were  exerting  a  disproportionate  effect                
873 upon   the   results   of   our   analysis 86 .   

874 MAGMA   analysis   of   COVID-19   GWAS   data   

875 MAGMA  (v1.08) 91  was  applied  using  default  settings.  Input  consisted  of  summary             

876 statistics  for  all  SNPs  genome-wide  as  measured  in  the  COVID-19  GWAS 7 .  We              
877 estimated  LD  structure  using  EUR  samples  from  the  1000  Genomes  Project  (Phase  3).               

878 The   top   50   MAGMA   genes 35    were   used   for   downstream   analysis.   

879 DNA   sequencing   in   rare   variant   analysis   

880 GEN-COVID  cohort .  The  cohort  was  recruited  by  the  GEN-COVID  consortium            
881 ( https://sites.google.com/dbm.unisi.it/gen-covid )  as  described  previously 52 .  Briefly,  adult        

882 patients  (>18  years)  were  recruited  from  35  Italian  hospitals  starting  on  March  16,  2020.                

883 Infection  status  was  confirmed  by  SARS-CoV-2  viral  RNA  polymerase-chain-reaction           
884 (PCR)  test  collected  at  least  from  nasopharyngeal  swabs.  Demographics  and  clinical             

885 severity   were   assessed   via   an   extensive   questionnaire.   

886 Sequencing  and  variant  calling  were  performed  as  described  previously 52 .  Briefly,            
887 sample  preparation  was  performed  following  the  Nextera  Flex  for  Enrichment            

888 manufacturer  protocol.  Whole-exome  sequencing  was  performed  with  >97%  coverage           
889 at  20X  using  the  Illumina  NovaSeq  6000  System  (Illumina,  San  Diego,  CA,  USA).               

890 Reads  were  aligned  to  human  reference  genome  build  GRCh38  using  BWA 92 .  Variants              

891 were  called  according  to  the  GATK4  best  practice  guidelines 93 .   Duplicates  were             
892 removed  by   MarkDuplicates ,  and  base  qualities  were  recalibrated  using           

893 BaseRecalibration  and   ApplyBQSR .   HaplotypeCaller  was  used  to  calculate  Genomic           
894 VCF  files  for  each  sample,  which  were  then  used  for  multi-sample  calling  by               

895 GenomicDBImport  and   GenotypeGVCF .  In  order  to  improve  the  specificity-sensitivity           

896 balance,  variant  quality  scores  were  calculated  by   VariantRecalibrator  and   ApplyVQSR .            
897 Variants   with   sequencing   depth   <20X   were   excluded.   

898 VA  cohort .  Whole-genome  sequence  data  on  the  VA  COVID-19  cohort  was  derived  from               

899 the  VA  Million  Veteran  Program  (MVP).  The  VA  MVP  is  an  ongoing  national  voluntary                
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900 research  program  that  aims  to  better  understand  how  genetic,  lifestyle,  and             
901 environmental  factors  influence  veteran  health 94 .  Briefly,  individuals  aged  18  to  over  100              

902 years  old  have  been  recruited  from  over  60  VA  Medical  Centers  nationwide  since  2011                
903 with  current  enrollment  at  >800,000.  Informed  consent  is  obtained  from  all  participants              

904 to  provide  blood  for  genomic  analysis  and  access  to  their  full  electronic  health  record                

905 (EHR)  data  within  the  VA  prior  to  and  after  enrollment.  The  study  received  ethical  and                 
906 study  protocol  approval  from  the  VA  Central  Institutional  Review  Board  in  accordance             

907 with  the  principles  outlined  in  the  Declaration  of  Helsinki.  COVID-19  cases  were              
908 identified  using  an  algorithm  developed  by  the  VA  COVID  National  Surveillance  Tool              

909 based  on  reverse  transcription  polymerase  chain  reaction  laboratory  test  results            

910 conducted  at  VA  clinics,  supplemented  with  natural  language  processing  on  clinical             
911 documents   for   SARS-CoV-2   tests   conducted   outside   of   the   VA 95 .   

912 DNA  isolated  from  peripheral  blood  samples  was  used  for  whole-genome  sequencing.             

913 Libraries  were  prepared  using  KAPA  hyper  prep  kits,  PCR-free  according  to             
914 manufacturers’  recommendations.  Sequencing  was  performed  using  Illumina  NovaSeq         

915 6000  System  (Illumina,  San  Diego,  CA,  USA)  with  paired-end  2x150bp  read  lengths,              
916 and  Illumina’s  proprietary  reversible  terminator-based  method.  The  specimens  were           

917 sequenced  to  a  minimum  depth  of  25X  per  specimen  and  an  average  coverage  of  30X                 

918 per   plate.   

919 WGS  data  processing  in  the  MVP  was  performed  via  the  functional  equivalence  GATK               
920 variant  calling  pipeline 96 ,  which  was  developed  by  the  Broad  Institute  and  plugged  into               

921 our  data  and  task  management  system  Trellis.  The  human  reference  genome  build  was               
922 GRCh38.  We  used  BWA-MEM  (v0.7.15)  to  align  reads,  Picard  2.15.0  to  mark  PCR               

923 duplicates,  and  GATK  4.1.0.0  for  BQSR  and  variant  calling  via  the   haplotypeCaller              

924 function.  We  also  used  FASTQC  (v0.11.4),  SAMTools   flagstat  (v0.1.19),  and  RTG  Tools              
925 vcfstats  (v3.7.1)  to  assess  the  qualities  of  the  FASTQ,  BAM,  and  gVCF  files,               

926 respectively.  In  addition,  we  used   verifybamID  in  GATK  4.1.0.0  to  estimate  DNA              
927 contamination  rates  for  individual  genomes  and  removed  samples  with  5%  or  more              

928 contaminated   reads.   

929 Data   quality   control   
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930 GEN-COVID  cohort .  To  guarantee  high  quality  of  the  sequencing  data,  we  performed              
931 numerous  quality  control  procedures.  On  the  sample  level,  we  (1)  computed  inbreeding              

932 coefficients  (Fhat1,  Fhat2,  and  Fhat3  in  GCTA 97 )  and  removed  genomes  that  resided              
933 more  than  3  standard  deviation  from  the  mean;  (2)  computed  identity-by-descent  (IBD)              

934 and  only  kept  one  genome  from  pairs  with  proportion  IBD>0.2;  (3)  computed  missing               

935 calls  for  each  genome  and  removed  those  with  missing  rate  larger  than  10%;  (4)                
936 computed  singleton  calls,  SNV  count,  indel  count,  Ti/Tv  ratio,  and  heterozygous  calls  for               

937 each  genome  and  removed  genomes  that  resided  more  than  3  standard  deviation  from               
938 the   mean.   

939 On  the  variant  level,  we  (1)  removed  multiallelic  sites;  (2)  kept  variants  in  autosomes;                

940 (3)  removed  variants  on  blacklisted  regions,  compiled  by  the  ENCODE  Project             

941 Consortium  (Phase  4);  (4)  removed  variants  identified  other  than  ‘‘PASS,’’  such  as  ‘‘low               
942 quality,’’  ‘‘tranche99.0-99.5,’’  by  VQSR  in  GATK;  (5)  removed  variants  with  missing  rate              

943 larger  than  10%.  The  samples  which  passed  QCs  were  provided  in   Supplementary              
944 Table   8 .   

945 VA  cohort .  For  deriving  high-quality  variants  for  downstream  analysis,  we  removed             

946 samples  with  kinship  >0.03,  sample  call  rate  <0.97,  or  mean  sample  coverage  <=18X.               
947 Genomic  positions  resided  in  low  complexity  regions  or  ENCODE  blacklisted  regions             

948 were  first  removed.  Next,  we  filtered  out  genotypes  in  individual  samples  that  were               

949 detected  with  too  low  or  too  high  of  read  coverages  (DP<5  or  >1500).  We  required  all                  
950 calls  to  have  genotype  quality  (GQ)  >=20,  and  for  non-reference  calls,  sufficient  portion               

951 (>0.9)  of  reads  was  required  to  cover  the  alternate  alleles.  In  addition,  we  removed                
952 genomic  positions  with  cohort-wise  call  rate  <0.95  and  computed  Hardy-Weinberg            

953 equilibrium  (HWE),  which  was  required  to  be  <1e-05  for  common  variants  and  <1e-06               

954 for  rare  variants.  With  all  these  filtering  completed,  we  assessed  the  sample-level              
955 genomic  parameters,  such  as  Ti/Tv  ratios,  het/hom  ratios,  and  number  of             

956 singletons/SNVs/INDELs,  and  removed  any  sample  that  fell  into  the  tail  regions  of  the               
957 distribution  (>=3  standard  deviation).  The  samples  which  passed  QCs  were  provided  in              

958 Supplementary   Table   9 .  

959 Ancestry   analysis   
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960 We  performed  population  admixture  analysis  using  ADMIXURE 98  (v1.3.0)  referencing           
961 five  super  populations,  including  AFR  (African),  AMR  (Ad  Mixed  American),  EAS  (East              

962 Asian),  EUR  (European),  and  SAS  (South  Asian),  in  the  1000  Genomes  Project  (Phase               
963 3)  and  inferred  the  ancestry  for  each  genome.  For  the  GEN-COVID  cohort,  samples               

964 with  >90%  EUR  ancestry  fraction  were  kept  in  the  discovery  cohort.  For  the  VA                

965 COVID-19  cohort,  we  relaxed  the  ancestry  fraction  cutoff  to  70%  for  including  more               
966 samples  in  testing.  Inferred  sample  ancestry  can  be  found  in   Supplementary  Tables  8               

967 and    9 .   

968 Variant-   and   gene-level   annotations   

969 Genome  annotation  was  performed  by  Annovar 53  integrating  multiple  databases.  Variant            
970 frequency  was  estimated  using  the  1000  Genomes  Project  (Phase  3).  Nonsynonymous             

971 (missense  and  nonsense)  variants  were  annotated  using  dbNSFP 99  (v3.5).  The            
972 mutation  effect  of  splicing-site  variants  was  predicted  by  dbscSNV 100   (v1.1)  and             

973 regSNP-intron 101 .   

974 Rare-variant   burden   testing   

975 Rare-variant  burden  testing  was  performed  to  determine  whether  any  genes  were             
976 differentially  enriched  with  rare  variants  between  severe  COVID-19  patients  and            

977 non-severe  COVID-19-positive  controls.  We  utilized  whole-exome  sequencing  data  from           

978 the  GEN-COVID  cohort 51 ,  including  122  individuals  aged  ≤60  years  who  suffered  severe              
979 COVID-19  requiring  respiratory  support,  and  465  individuals  aged  ≥20  years  who             

980 suffered  non-severe  COVID-19  not  requiring  hospitalisation.  Variants  were  included  if            
981 they  altered  an  amino  acid,  were  rare  (MAF<1%)  and  absent  from  the  EUR  cohort  of  the                  

982 1000  Genomes  Project  (Phase  3).  Burden  was  calculated  using  SKAT 50  adjusted  for              

983 sample  imbalance  using  a  saddlepoint  approximation 102 .  Sex  and  the  first  ten  principal              
984 components  were  included  as  covariates.  Genetic  burden  was  compared  with  the             

985 complete  set  of  coding  genes;  genes  caring  <10  variants  were  removed  because  of               
986 insufficient  data.  After  filtering  a  total  set  of  4,280  genes  were  tested  for               

987 severe-COVID-19-associated  rare  genetic  variation  of  which  625  were  also  RefMap            
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988 COVID-19  genes.  A  QQ-plot  confirmed  that  there  was  no  significant  genomic  inflation              

989 (λGC=1.1;    Supplementary   Fig.   4 ).     

990 Regeneron’s  burden  testing  results  were  obtained  from  the  Regeneron  results  browser             

991 ( https://rgc-covid19.regeneron.com/results ),  where  only  semi-significant  genes       
992 ( P <1e-03,  REGENIE 103 )  were  available.  Data  consists  of   exome-wide  association           

993 studies  of  various  COVID-19  outcomes  across  662,403  individuals  (11,356  with            

994 COVID-19)  aggregated  from  four  studies:  UK  Biobank  (UKB;   n =455,838),  AncestryDNA            
995 COVID-19  Research  Study  ( n =83,930),  Geisinger  Health  System  (GHS;   n =113,731),           

996 and  Penn  Medicine  BioBank  (PMBB;   n =8,904).   For  the  Regeneron  study  of  severe              
997 COVID-19  versus  non-hospitalized  COVID-19,  we  obtained  a  list  of  68  genes  harboring              

998 disease-associated  missense  mutations  at  a  significance  cutoff  of   P <1e-03  in  EUR             

999 samples.  Overlap  between  PULSE  genes  and  Regeneron  gene  lists  was  tested  by              
1000 Fisher’s  exact  test,  assuming  a  background  of  19,396  coding  genes  in  the  genome               

1001 which   is   the   total   number   profiled   by   Regeneron 12 .   

1002 The   PULSE   model   

1003 Feature  engineering .  Given  the  variant  annotations  from  ANNOVAR,  we  calculated            
1004 gene-level  mutation  profiles  for  each  individual.  Here  we  only  focused  on  rare              

1005 nonsynonymous  and  splicing-site  SNVs  as  well  as  frameshift  and  splicing-site  indels.             
1006 Rare  variants  were  defined  as  those  not  present  within  1000  Genomes  Project  (Phase               

1007 3)  samples.  For  nonsynonymous  and  splicing-site  SNVs,  we  calculated  the            

1008 accumulative  mutation  burdens  for  each  gene  based  on  individual  annotations  (32  in              
1009 total;   Supplementary  Table  7 ).  For  indels,  the  number  of  variants  was  counted  for               

1010 frameshift  and  splicing-site,  respectively  ( Supplementary  Table  7 ).  Consequently,  the           
1011 mutation   profile   consists   of   34   features   per   gene   per   individual.   

1012 Mapping  phenotype  from  genotype .  Given  the  mutation  profiles              

1013 for  the  i -th  sample  and  the  corresponding  disease  status   (  indicates  a               

1014 case,  and   otherwise),  PULSE  models  the  conditional  ,  which  is  the              

1015 probability  of  disease  status  for  the   i -th  sample  characterized  by  the  genome.  Here   K ,                

1016 M ,  and   N  are  the  numbers  of  annotation  features,  genes,  and  samples,  respectively.               
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1017 Note  that  we  have   K =34  in  this  study.  In  particular,  we  aggregate  the  mutation  profiles                 
1018 across   the   genome   using   a   bilinear   transformation   and   define   the   conditional   as   

1019 ,   (19)   

1020 where   denotes  the  sigmoid  function,   are  random  variables  weighing  the              

1021 importance  of  each  annotation  feature,  and   effect  sizes  for  individual  genes.  We               

1022 model     by   a   multivariate   Gaussian   given   by   

1023 ,   (20)   

1024 in   which   the   precision   matrix     is   characterized   by   a   Wishart   distribution,   i.e.,   

1025 ,   (21)   

1026 and  the  hyperparameters  are  set  to   and   to  introduce  non-informative              

1027 prior.   

1028 To   prevent   overfitting,   we   introduce   a   spike-and-slab   prior   over   ,   i.e.,   

1029 ,   (22)   

1030 where   is  the  probability  of  being  non-zero  and   is  the  Dirac  function  forcing                   
1031 to  be  zero.  Two  additional  conjugate  priors  are  further  used  over  distribution  parameters               

1032 in   (22),   i.e.,   

1033 ,   (23)   

1034 and   

1035 ,   (24)   

1036 in  which  we  set   (i.e.,  the  Jeffrey  prior)  and   to  keep  it                

1037 non-informative.  In  this  study,  to  prevent  false  positives,  accelerate  computation,  and             
1038 eliminate  the  sex  bias  in  the  genetic  modelling,  we  only  considered  autosomal  genes               

1039 that  are  expressed  in  human  lungs  (TPM>1  in  lung  RNA-seq  from  GTEx 104 ),  resulting  in                

1040 M =13,129.   The   diagram   of   the   model   structure   is   shown   in   Panel   3   of    Fig.   4b .   

1041 Model  inference .   The  exact  inference  in  PULSE  is  intractable.  Here  we  adopt  the               
1042 mean-field  variational  inference  (MFVI),  an  approximate  but  efficient  way  to  perform             

1043 inference  in  Bayesian  models 73 .  Since  the  model  posterior  is  difficult  to  calculate,  MFVI               
1044 aims  to  search  for  an  optimal  distribution  closest  to  the  model  posterior  from  a  family  of                  
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1045 regularized  proposal  distributions  factorized  with  each  other.  Indeed,  the  solution  of             
1046 MFVI   is   given   by   minimizing   the   Kullback-Leibler   (KL)   divergence,   i.e.,   

1047 ,   
1048 where   represents  the  set  of  hidden  variables  in  the  model,  and   is  the  family  of                   

1049 factorized  proposal  distributions.  It  can  be  shown  that  minimizing  the  KL  divergence  is               

1050 mathematically  equivalent  to  maximizing  the  evidence  lower  bound  (ELBO) 73 ,  which  is             
1051 solvable  in  optimization.  Further,  in  order  to  make  the  MFVI  for  PULSE  tractable  and                

1052 efficient,   several   techniques   were   adopted.   

1053 (i)   Local  variational  method .  The  sigmoid  function  in  Eq.  (19)  makes  MFVI  intractable.               
1054 However,  instead  of  dealing  with  the  sigmoid  directly,  we  can  approximately  calculate              

1055 the  posteriors  of   and   with  respect  to  its  lower  bound,  which  yields  Gaussian  or                  
1056 Gaussian-like  distributions.  Meanwhile,  to  make  the  approximation  close  to  the  true             

1057 MFVI  solution,  we  need  to  maximize  the  log-likelihood  of  observations  that  take  the               

1058 sigmoid  lower  bound  into  account  with  respect  to  local  variational  parameters             
1059 introduced.  This  local  variational  method  introduces  a  new  objective  function,  which  is              

1060 consistent  with  the  original  MFVI.  More  technical  details  can  be  found  in  Supplementary               
1061 Notes.   

1062 (ii)   Reparameterization .  The  spike-and-slab  prior  over   (Eq.  (22))  also  makes  MFVI              

1063 intractable.  To  solve  this  problem,  we  adopted  the  reparameterization  trick  introduced  in              

1064 105 .  In  particular,   can  be  reparameterized  by  two  other  variables   and  ,  whose                 
1065 joint   distribution   is   given   by   

1066 ,   (25)   

1067 and  the  new  variable   follows  the  same  distribution  as  in  Eq.  (22).  Therefore,  we                 

1068 can  do  MFVI  over   and   instead  of  .  However,  this  still  introduces  another                 

1069 problem  and  makes  the  VI  highly  inefficient,  where  the  approximate  posteriors  from              
1070 reparameterization  (unimodal)  could  badly  deviate  from  the  original  posteriors           

1071 (exponentially  multimodal).  To  alleviate  this  issue,  a  partial  factorization  was  taken  by              
1072 following 105 ,   i.e.,   we   assume   
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1073 ,   (26)   

1074 in  proposal  distributions,  and  performed  MFVI  over   and   jointly.  More  technical               

1075 details   can   be   found   in   Supplementary   Notes.   

1076 (iii)   Stochastic  variational  inference .  Conventional  MFVI  based  on  coordinate  ascent            
1077 (i.e.,  CAVI)  updates  variational  parameters  in  batches.  However,  it  is  difficult  to  deploy               

1078 such  a  batch  algorithm  in  big  data  scenarios,  where  the  sample  size  or  feature                

1079 dimension  is  large.  Here,  stochastic  variational  inference  (SVI) 106  was  used  to  scale  up               
1080 our  model  for  the  large  amount  of  genome  data.  In  fact,  borrowing  the  idea  from                 

1081 stochastic  optimization,  we  can  update  parameters  per  epoch  by  using  only  one  or  a                
1082 mini-batch  of  samples  instead  of  the  whole  dataset.  Specifically,  with  SVI  we  first               

1083 calculated  the  natural  gradient  of  ELBO  with  respect  to  the  variational  parameter  whose               
1084 update  rule  contains  sample  points.  Thanks  to  the  conditional  conjugacy  predefined  in              

1085 our  model,  the  natural  gradient  enjoys  a  simple  form  (see  Supplementary  Notes  for               

1086 details).  Then  based  on  stochastic  optimization,  we  sampled  a  minibatch  and  rescaled              
1087 the  term  involving  sample  points,  resulting  in  a  noisy  but  cheaply  computed  and               

1088 unbiased  natural  gradient.  At  last,  the  variational  parameter  was  updated  from  this              
1089 gradient  according  to  the  gradient-based  optimization  algorithm 107 .  This  SVI  update  can             

1090 be  easily  embedded  into  CAVI  without  many  changes.  In  implementation,  we  followed              

1091 106    and   set   the   learning   rate   as   

1092 ,   (27)   

1093 where    t    is   the   iteration   index,     is   the   delay,   and     is   the   forgetting   rate.   

1094 We  integrated  all  above  techniques  into  our  VI  algorithm.  Details  on  the  update  rules  for                 
1095 both  local  and  global  variational  parameters  and  the  VI  algorithm  are  provided  in               

1096 Supplementary   Notes.   

1097 MAP  prediction .  The  exact  Bayesian  prediction  for  test  samples  needs  to  integrate  out               

1098 all  hidden  variables,  which  is  computationally  intense  and  usually  not  necessary.  Here,             
1099 we   adopted   maximum   a   posteriori   (MAP)   and   predicted   new   coming   sample   by   

1100 ,   (28)   
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1101 where   the   optimal   hidden   variables   are   given   by   

1102
.   (29)   

1103 Similarly,  the  importance  weights  for  individual  genes  (referred  to  as  PULSE  gene              

1104 weights)   were   also   estimated   by   the   MAP   of   .   

1105 Network   analysis   

1106 We  first  downloaded  the  human  PPIs  from  STRING  v11,  including  19,567  proteins  and               

1107 11,759,455  protein  interactions.  To  eliminate  the  bias  caused  by  hub  proteins,  we  first               
1108 carried  out  the  random  walk  with  restart  algorithm 108  over  the  PPI  network,  wherein  the                

1109 restart  probability  was  set  to  0.5,  resulting  in  a  smoothed  network  after  retaining  the  top                 

1110 5%  predicted  edges.  To  decompose  the  network  into  different  subnetworks/modules,  we             
1111 performed  the  Leiden  algorithm 62 ,  a  community  detection  algorithm  that  searches  for             

1112 densely  connected  modules  by  optimizing  the  modularity.  After  the  algorithm  converged,             
1113 we  obtained  1,681  modules  with  an  average  size  of  9.98  nodes  (SD=53.35;              

1114 Supplementary   Table   13 ).   

1115 Transcriptome   analysis   

1116 Four  single-cell  RNA-seq  datasets  were  used  in  the  transcriptome  analyses,  including             
1117 human  healthy  lungs 33 , 39  and  COVID-19  patients 22,23 .  Data  after  QC  was  acquired  for              

1118 each  study.  Only  samples  from  the  respiratory  system  were  considered  in  the  analyses.               

1119 For  the  healthy  lung  data,  a  cutoff  of  0.6931  was  used  to  define  expressed  genes  in  the                   
1120 transcriptome  throughout  the  study  if  not  specified.  For  the  disease  samples,  we              

1121 removed  the  overlap  of  severe  patients  between  the  two  cohorts 22,23 .  In  the  comparative               
1122 expression  analysis  of  severe  versus  moderate  patients,  to  stabilize  the  analysis  we              

1123 estimated  the  change  of  gene  expression  levels  using  the   Z -score  estimated  from              

1124 Wilcoxon  rank-sum  test,  wherein  a  positive   Z -score  indicates  a  higher  expression  level              
1125 in  severe  patients  and  a  negative  value  suggests  the  lower  expression.  The              

1126 Benjamini-Hochberg  (BH)  procedure  was  used  for  multiple  testing  correction  throughout            

1127 the   study.   
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Supplementary Notes for “Common and rare variant

analyses combined with single-cell multiomics reveal

cell-type-specific molecular mechanisms of COVID-19

severity”

1 Update rules of variational inference for PULSE

We provide update rules for the local and global variational parameters in PULSE.

1.1 Local variational method

As described in the Methods section in our main text, we used the local variational method [1]
to handle the sigmoid function in variational inference (VI). Indeed, the sigmoid function
involved in the Bernoulli distribution in Eq. 19 in the Methods section can be lower bounded
by

σ(ci) ≥ h(ci, ξi) = σ(ξi) exp
{

(ci − ξi)/2− χ(ξi)(c
2
i − ξ2

i )
}
, (1)

where

χ(ξ) =
1

2ξ

(
σ(ξ)− 1

2

)
, (2)

ci = wᵀ
1Xiw2, and ξi is a local variational parameter introduced to control the bound

tightness. Therefore, the log-likelihood of observations is also lower bounded, i.e.,

ln p(y1:N |X1:N ) = ln

∫
p(y1:N |X1:N ,Θ)p(Θ)dΘ

= ln

∫ ( N∏
i=1

p(yi|Xi,Θ)

)
p(Θ)dΘ

= ln

∫ (
exp

{
N∑
i=1

ciyi

}
N∏
i=1

σ(−ci)

)
p(Θ)dΘ

≥ ln

∫ (
exp

{
N∑
i=1

ciyi

}
N∏
i=1

h(−ci, ξi)

)
p(Θ)dΘ

= L(ξ1:N ). (3)

On one hand, we aim to perform variational inference based on the tractability of the
lower bound h(ci, ξi), matching the proposal distribution with the true posterior. On the
other hand, the variational parameters ξi’s need to be optimized by maximizing the lower
bound L(ξ1:N ) of the marginal likelihood, which achieves a better approximation after each

1



update. Therefore, we adopted the variational expectation-maximization (VEM) algorithm
that solves both optimization problems simultaneously.

We first note that the “joint distribution”, denoted by p̂?, after lower bounding is not
a proper density function, but by normalization, the inequality may not hold any more.
Indeed, after normalizing, we get

p? =
1

A(ξ1:N )
p̂?, (4)

with

A(ξ1:N ) =
∑
y1:N

∫ (
exp

{
N∑
i=1

ciyi

}
N∏
i=1

h(−ci, ξi)

)
p(Θ)dΘ. (5)

Then, we can rewrite the lower bound L(ξ1:N ) as

L(ξ1:N ) = ln

∫
p?dΘ + lnA(ξ1:N )

= ELBOp?(q, ξ1:N ) + KL(q ‖ p?) + lnA(ξ1:N )

= ELBOp̂?(q, ξ1:N ) + KL(q ‖ p?), (6)

resulting in a similar decomposition of the marginal log-likelihood to that in conventional
VI.

As a consequence, we can perform the VEM as follows. (i) In the E-step where the
variational parameters ξ1:N are fixed, the standard variational inference is performed to
maximize the computationally feasible ELBOp̂?(q, ξ1:N ) with respect to q. Here, everything
in the mean-field variational inference (MFVI) keeps unchanged except replacing the sigmoid
functions in the joint distribution by their lower bounds given by Eq. 1. This computes the
approximate distribution best matching the true posterior, i.e., minimizing the KL diver-
gence between q and p? (see the last equation in Eq. 6). After the E-step, we approximately
tighten the gap between L(ξ1:N ) and the ELBO, and obtain L(ξ1:N ) ≈ ELBOp̂?(q, ξ1:N ).
(ii) In the M-step, we fix q and maximize the ELBO with respect to ξ1:N , which increases
L(ξ1:N ) accordingly, as it is obvious that the inequality L(ξ1:N ) ≥ ELBOp̂?(q, ξ1:N ) holds.
Using VEM, we update q’s and ξi’s iteratively, gradually increasing the log-likelihood lower
bound until reaching a local optimum and simultaneously yielding approximate posteriors
with performance guarantee.

According to above discussions, we first get the lower bound of the log-likelihood of the
conditional distribution over observations, i.e.,

ln

N∏
i=1

p(yi|Xi,w1,w2) =

N∑
i=1

yi lnσ(wᵀ
1Xiw2) + (1− yi) ln(1− σ(wᵀ

1Xiw2))

=

N∑
i=1

wᵀ
1Xiw2yi + lnσ(−wᵀ

1Xiw2)

≥
N∑
i=1

wᵀ
1Xiw2

(
yi −

1

2

)
− χ(ξi)(w

ᵀ
1Xiw2)2 + lnσ(ξi)−

1

2
ξi + χ(ξi)ξ

2
i ,

(7)

which serves as the basis for the inference of w1 and w2. Then based on this lower bound

2



and the update principle of MFVI, the logarithm of q(w1) can be calculated as

ln q(w1) ∝ E−w1

[
−1

2
wᵀ

1Λw1 +

N∑
i=1

(
wᵀ

1Xiw2

(
yi −

1

2

)
− χ(ξi)(w

ᵀ
1Xiw2)2

)]

= −1

2
wᵀ

1

(
E[Λ] + 2

N∑
i=1

χ(ξi)XiE[w2w
ᵀ
2 ]Xᵀ

i

)
w1 +wᵀ

1

N∑
i=1

(
yi −

1

2

)
XiE[w2].

(8)

This indicates that q(w1) follows a Gaussian defined as

q
(
w1; µ̃w1

, Λ̃w1

)
= N

(
w1; µ̃w1

, Λ̃
−1

w1

)
, (9)

where

µ̃w1
= Λ̃

−1

w1

N∑
i=1

(
yi −

1

2

)
XiE[w2],

Λ̃w1 = E[Λ] + 2

N∑
i=1

χ(ξi)XiE[w2w
ᵀ
2 ]Xᵀ

i .

(10)

(11)

The update rules expressed in Eqs. 10 and 11 are batch based, which is inefficient for large
sample size or large feature dimension. We will transform this batch update into stochastic or
mini-batch one based on the stochastic variantional inference (SVI), scaling up the inference
algorithm to big data. More details are shown in Section 1.3.

1.2 Reparameterization

To perform VI over the spike-and-slab prior defined in Eq. 22 in the Methods section of
the main text, we adopted the reparameterization trick introduced in [4]. In particular, as
discussed in the Methods section, w2 can be reparameterized by two additional variables s
and w̄2 with

w2 = w̄2 ◦ s, (12)

where ◦ means element-wise product. It can be easily shown that the new variable con-
structed by w̄2jsj follows the same distribution as w2j . Then we can perform MFVI over
w̄2 and s. However, the solution derived from a direct application of the fully factorized
MFVI will deviate from the true posterior q(w2) a lot, as the former is unimodal while
the latter exponentially multimodal. To solve this problem, we followed [4], in which w̄2j

and sj are bundled together in the factorization. In particular, we assume the proposal
distributions factorize as

q(w̄2, s) =

M∏
j=1

q(w̄2j , sj), (13)

3



Given the MFVI principle, after substituting w2j with w̄2jsj in Eq. 7, we get

ln q(w̄2j , sj) ∝ E−{w̄2j ,sj}

[
N∑
i=1

wᵀ
1Xiw2

(
yi −

1

2

)
− χ(ξi)(w

ᵀ
1Xiw2)2

−1

2
λw̄2

2j + sj lnπ + (1− sj) ln(1− π)− 1

2

L∑
l=1

r−1
l

(
ŵ

(l)
2 −w2

)ᵀ (
ŵ

(l)
2 −w2

)]

∝ E−{w̄2j ,sj}

[
N∑
i=1

(
yi −

1

2

)
Xi1jw̄2jsj − χ(ξi)

X2
i1jw̄

2
2jsj + 2Xi1j

∑
k 6=j

Xi1kw2k

 w̄2jsj


−1

2
λw̄2

2j + sj lnπ + (1− sj) ln(1− π)− 1

2

L∑
l=1

r−1
l

(
w̄2

2jsj − 2ŵ
(l)
2j w̄2jsj

)]

= −1

2

(
2

N∑
i=1

χ(ξi)E
[
X2
i1j

]
sj + E[λ] +

L∑
l=1

r−1
l sj

)
w̄2

2j

+

 N∑
i=1

(
yi −

1

2

)
E[Xi1j ]− 2χ(ξi)E[Xi1j ]E

∑
k 6=j

Xi1kw2k

+

L∑
l=1

r−1
l E

[
ŵ

(l)
2j

] sjw̄2j ,(14)

where we define
Xi1j = wᵀ

1Xi1j , (15)

and 1j is a vector with all zeros but the j-th element one.
Since q(w̄2j |sj) ∝ q(w̄2j , sj), based on Eq. 14, we have

q(w̄2j |sj = 0) = N
(
w̄2j ; µ̃w̄2j |sj=0, λ̃

−1
w̄2j |sj=0

)
, (16)

where

µ̃w̄2j |sj=0 = 0,

λ̃w̄2j |sj=0 = E[λ].

(17)

(18)

Similarly, q(w̄2j |sj = 1) also follows a Gaussian given by

q(w̄2j |sj = 1) = N
(
w̄2j ; µ̃w̄2j |sj=1, λ̃

−1
w̄2j |sj=1

)
, (19)

where

µ̃w̄2j |sj=1 =λ̃−1
w̄2j |sj=1

(
N∑
i=1

(
yi −

1

2

)
E[Xi1j ]

− 2χ(ξi)E[Xi1j ]E

[∑
k 6=j

Xi1kw2k

]
+

L∑
l=1

r−1
l E

[
ŵ

(l)
2j

])
,

λ̃w̄2j |sj=1 =2

N∑
i=1

χ(ξi)E
[
X2
i1j

]
+ E[λ] +

L∑
l=1

r−1
l .

(20)

(21)

The stochastic updates of Eqs. 20 and 21 are shown in Section 1.3.

4



To derive q(sj), we use the Bayes’ rule given by q(sj) = q(w̄2j , sj)/q(w̄2j |sj), yielding

q(sj) = Bern (sj ; π̃j) , (22)

where

π̃j =
ρ̃1j

ρ̃0j + ρ̃1j
, (23)

and

ln ρ̃0j = E[ln(1− π)]− 1

2
ln λ̃w̄2j |sj=0, (24)

ln ρ̃1j = E[lnπ] +
1

2
λ̃w̄2j |sj=1µ̃

2
w̄2j |sj=1 −

1

2
ln λ̃w̄2j |sj=1. (25)

The posterior statistics of w2j , including the expectation and variance, can be easily
calculated based on Eqs. 12, 17, 18, 20 and 21. In particular, the posterior statistics of
the marginal q(w̄2j) can be derived based on the laws of total expectation and variance,
respectively.

1.3 Stochastic variational inference

As discussed in the Methods section in the main text, to scale up the inference algorithm to
big data, we adopted SVI proposed in [3]. SVI updates variational parameters by summa-
rizing data points based on stochastic gradient optimization, in which the natural gradient
is used to account for measuring similarity between probability distributions. Thanks to the
conditional conjugacy introduced in our model, the natural gradient enjoys a simple form
without the calculation of the Hessian [3]. Then we can approximate the natural gradient by
randomly sampling a single or a mini-batch of samples, greatly reducing the computational
complexity per epoch. Here in our inference process, there are two steps where SVI needs
to be applied.

(i) For the update of q(w1) whose batch update is given by Eqs. 10 and 11, its stochastic
update is given by

φ
(t)
1 = (1− εt)φ(t−1)

1 + εt
N

B

∑
i∈I

(
yi −

1

2

)
XiE[w2],

φ
(t)
2 = (1− εt)φ(t−1)

2 + εt

(
−1

2
E[Λ]− N

B

∑
i∈I

χ(ξi)XiE[w2w
ᵀ
2 ]Xᵀ

i

)
,

(26)

(27)

where φ1 and φ2 are natural parameters in the exponential family form for multivariate
Gaussian, and I is a randomly sampled index set from 1 : N with size B. Then the
distribuiton parameters in q(w1) can be recovered by

µ̃w1
= −1

2
φ−1

2 φ1, (28)

Λ̃w1
= −2φ2. (29)

5



(ii) Similarly, for the update of q(w̄2j |sj = 1), its stochastic version is given by

ψ
(t)
1j =(1− εt)ψ(t−1)

1j + εt

(
N

B

∑
i∈I

(
yi −

1

2

)
E[Xi1j ]

− 2χ(ξi)E[Xi1j ]E

[∑
k 6=j

Xi1kw2k

]
+

L∑
l=1

r−1
l E

[
ŵ

(l)
2j

])
,

ψ
(t)
2j =(1− εt)ψ(t−1)

2j + εt

(
− N

B

∑
i∈I

χ(ξi)E
[
X2
i1j

]
− 1

2
E[λ]− 1

2

L∑
l=1

r−1
l

)
,

(30)

(31)

where ψ1j and ψ2j are natural parameters in the exponential family form of Gaussian. In
particular, the parameters in q(w̄2j |sj = 1) can be recovered by

µ̃w̄2j |sj=1 = −1

2
ψ−1

2j ψ1j , (32)

λ̃w̄2j |sj=1 = −2ψ2j . (33)

1.4 Update rules for other global variational parameters

For other variational parameters, we perform standard MFVI and have

q
(
Λ; W̃Λ, ν̃Λ

)
=W

(
Λ; W̃Λ, ν̃Λ

)
, (34)

q
(
π; α̃π, β̃π

)
= Beta

(
π; α̃π, β̃π

)
, (35)

q
(
λ; ãλ, b̃λ

)
= Gamma

(
λ; ãλ, b̃λ

)
, (36)

in which

W̃
−1

Λ = W−1
0 + E[w1w

ᵀ
1 ],

ν̃Λ = ν0 + 1,

α̃π = α0 +

M∑
j=1

E[sj ],

β̃π = β0 +M −
M∑
j=1

E[sj ],

ãλ = a0 +
M

2
,

b̃λ = b0 +
1

2
E [w̄ᵀ

2w̄2] ,

(37)

(38)

(39)

(40)

(41)

(42)

1.5 Update rules for the local variational parameters

In addition to calculating posteriors, we also need to determine the local variational pa-
rameters ξi’s. According to our discussion in Section 1.1, we seek to optimizing ξi’s by
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maximizing the lower bound L(ξ1:N ) in Eq. 3. This corresponds to the M-step, in which
the expected complete-data log-likelihood is maximized, i.e.,

Q
(
ξ, ξold

)
∝ E

[
N∑
i=1

lnσ(ξi)−
1

2
ξi − χ(ξi)

(
(wᵀ

1Xiw2)
2 − ξ2

i

)]

=

N∑
i=1

lnσ(ξi)−
1

2
ξi − χ(ξi)

(
Tr (AiCov[w1]) + E[w1]ᵀAiE[w1]− ξ2

i

)
,

(43)

in which
Ai = XiE [w2w

ᵀ
2 ]Xᵀ

i . (44)

By setting the derivate of Eq. 43 with respect to ξi to zero, we get

0 = χ′(ξi)
(
Tr (AiCov[w1]) + E[w1]ᵀAiE[w1]− ξ2

i

)
, (45)

indicating that

(ξnew
i )

2
= Tr (AiCov[w1]) + E[w1]ᵀAiE[w1]. (46)

Note that we can force ξi’s to be nonnegative without loss of generality due to the mono-
tonicity of χ(ξi) when ξi ≥ 0.

2 Update termination

To terminate the algorithm, we need to monitor the change of ELBO, whose computation
is intense and undesirable. In this study, we followed the suggestions proposed in [2], in
which we computed the average log predictive for a small held-out dataset to track ELBO
evolution. We terminated the updates once the change of average log predictive fell below
a threshold, indicating convergence. Here, we set tol = 10−5 and terminate the algorithm
when the proportion of change in ELBO is less than the tolerance. The inference algorithm
is summarized in Algorithm 1.
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Algorithm 1: Stochastic MFVI for PULSE

Input : Model p, hyperparameters Θ and learning rate εt.
Output : Posteriors q and local variational parameters ξ1:N .

1 Initialize variational parameters.

2 while not converged do
3 Randomly split the dataset into N/B mini-batches D1:N/B .
4 for i = 1 : N/B do
5 1. Update local variational parameters ξ1:N based on Eq. 46.
6 2. Based on mini-batch Di, update φ1, φ2, ψ1j and ψ2j according to

Eqs. 26, 27, 30 and 31, respectively, and then update the corresponding
global variational parameters based on Eqs. 28, 29, 32 and 33.

7 3. Update other global variational parameters according to Eqs. 17, 18, 23,
37 to 40, successively.

8 end
9 Calculate average log predictive for the held-out dataset.

10 end
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