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ABSTRACT: The rapid development of metabolomics has
significantly advanced health and disease related research.
However, metabolite identification remains a major analytical
challenge for untargeted metabolomics. While the use of collision
cross-section (CCS) values obtained in ion mobility-mass
spectrometry (IM-MS) effectively increases identification con-
fidence of metabolites, it is restricted by the limited number of
available CCS values for metabolites. Here, we demonstrated the
use of a machine-learning algorithm called support vector
regression (SVR) to develop a prediction method that utilized
14 common molecular descriptors to predict CCS values for metabolites. In this work, we first experimentally measured CCS
values (ΩN2) of ∼400 metabolites in nitrogen buffer gas and used these values as training data to optimize the prediction method.
The high prediction precision of this method was externally validated using an independent set of metabolites with a median
relative error (MRE) of ∼3%, better than conventional theoretical calculation. Using the SVR based prediction method, a large-
scale predicted CCS database was generated for 35 203 metabolites in the Human Metabolome Database (HMDB). For each
metabolite, five different ion adducts in positive and negative modes were predicted, accounting for 176 015 CCS values in total.
Finally, improved metabolite identification accuracy was demonstrated using real biological samples. Conclusively, our results
proved that the SVR based prediction method can accurately predict nitrogen CCS values (ΩN2) of metabolites from molecular
descriptors and effectively improve identification accuracy and efficiency in untargeted metabolomics. The predicted CCS
database, namely, MetCCS, is freely available on the Internet.

Ion mobility-mass spectrometry (IM-MS) is a powerful
analytical technology which can separate ions rapidly in the

gas-phase within a millisecond time frame.1,2 A number of
collisions occurring between ions and inert buffer gas (typically
nitrogen or helium) under an electric field result in the
differences of drift time (DT).1 Ion’s collision cross-section
(CCS) value derived from the drift time is a unique
physicochemical property, which is related to the charge,
shape, and size of the measured ion and buffer gas.3−5 Thus, the
measurement of an ion’s drift time (or CCS value) using IM-
MS provides specific structural information on the ion.
Recently, IM-MS is becoming a popular analytical tool for
many research areas ranging from structural biology,2

proteomics,6−8 lipidomics,9−11 metabolomics,12−15 to clinical
analysis.16

The rapid development of metabolomics has largely
facilitated biomedical and clinical research.17,18 However,
metabolite identification remains a major analytical challenge
for untargeted metabolomics. Current methods for metabolite
identification are mainly based on accurate mass, retention time
(RT), and MS/MS spectra.17 Accurate mass can be readily
achieved using high-resolution mass spectrometers (such as
time-of-flight (TOF), Orbitrap). However, retention time in
liquid chromatography (LC) separation is largely affected by
the type of columns, mobile phase, gradient, and other factors

and is not easy to be standardized as a physicochemical
property. Our previous work has proved that metabolite
identification using MS/MS spectra was relatively more
accurate and robust.19,20 Although there are several metabolite
MS/MS spectral libraries available (such as METLIN,21

MassBank22), it suffers from the limited number of MS/MS
spectra. For example, in METLIN, only 14 034 out of 242 031
metabolites (5.8%) have available MS/MS spectra.23 Therefore,
it becomes more important to use other readily obtained
physicochemical properties for metabolite identification.
Recently, measurements of CCS values in metabolomics

showed high reproducibility within 2% of precision.15,24−26 The
addition of CCS values to the metabolite library readily
increases the identification confidence of metabolites of
interest.15,25,26 Similar to the construction of MS/MS spectral
library, it is not feasible for each lab to purchase and measure a
large number of metabolite standards to obtain standard CCS
values. In addition, the vast majority of metabolite standards are
not commercially available. Therefore, there are only a small
number of standard CCS values available for metabolites.15,24,26
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Another approach to obtain CCS values is using computational
chemistry tools like MOBCAL to calculate theoretical CCS
values.27−29 Software simulates the interactions between ions
and buffer gas using different modeling methods such as
trajectory method (TM),30 projection approximation (PA),30

or exact hard sphere scattering (EHSS).31 In the past decade,
theoretically calculated CCS values were widely employed.
However, the method required high computational resource
and at least several days to complete the calculation of one
small molecule. Moreover, compared to the experimentally
measured CCS values, estimated relative errors of theoretically
calculated CCS values using nitrogen as buffer gas were about
3−30% depending on the modeling method.15,32,33 Therefore,
both precision and efficiency need further improvements for
theoretical calculation of CCS values.

Recently, adopting machine-learning based mathematical
methods to predict drift times or CCS values was successfully
employed for peptides with well-defined amino acid sequen-
ces.34,35 For example, the program imPredict used 134
physicochemical properties of peptides directly from its
amino acid sequence, like peptide length and number of
nonpolar hydrophobic residues to predict a peptide’s drift time
(but not CCS values).34 However, metabolites do not have
peptide-like repeating units and own remarkable differences on
chemical and structural properties. Meanwhile, time cost and
efficiency to obtain tens or hundreds of molecular descriptors
for thousands to ten thousands of metabolites is quite
challenging for most laboratories. Here, we used a machine-
learning algorithm called support vector regression (SVR) to
develop a prediction method that utilizes 14 common
molecular descriptors for the prediction of metabolite’s CCS

Figure 1. Schematic illustration of CCS value prediction using support vector regression (SVR) algorithm: (a) steps to develop and optimize the
SVR based prediction method; (b) validation of prediction performance; (c) generation of a large-scale predicted CCS database containing 35 203
metabolites. Each metabolite has 5 types of adducts for positive and negative polarities.
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values (Figure 1 and Table S1). The molecular descriptors were
obtained from the human metabolome database (HMDB,
http://www.hmdb.ca/).36 Specifically, CCS values of 396 and
400 metabolite standards in positive and negative modes,
respectively, were first experimentally measured on a drift tube
based IM-MS instrument and used as training data to optimize
the SVR based prediction method. Then the prediction method
was further externally validated using an independent set of
metabolites with a median relative error (MRE) of ∼3%,
significantly better than theoretical calculation. Using this
method, we generated a large-scale predicted CCS database
containing 35 203 metabolites in HMDB and predicted
nitrogen CCS values (ΩN2) were proven to effectively improve
the accuracy of metabolite identifications in real biological
samples. The predicted CCS database, namely, MetCCS, is
freely available on the Internet (http://www.metabolomics-
shanghai.org/software.php).

■ EXPERIMENTAL SECTION
All IM-MS data was measured using a UHPLC system (Agilent
1290 series) coupled to a quadruple time-of-flight mass
spectrometer equipped with an ion-mobility drift tube (Agilent
DTIM-QTOF-MS 6560, Agilent Technologies). Nitrogen was
used for IM separation in this work. The extraction of
metabolites from biological samples followed the protocol in
our previous publication.37 Other experimental details about
chemicals, preparation of metabolite standards, DTIM-QTOF-
MS parameters are provided in the Supporting Information.
Measurements of Experimental CCS Values. All

metabolite standards were individually measured in batches,
and the design of acquisition batch was provided in Scheme S1
in the Supporting Information. Specifically, every batch has 100
metabolite standards, and Agilent tune mix solution (Tables S2
and S3 in the Supporting Information) was first injected to
establish CCS calibration curve for subsequent measurements.
During the data acquisition, quality control (QC) samples were
repetitively measured every 20 injections to evaluate the
instrument performance. The results from QC samples showed
that CCS measurements had a relative standard deviation
(RSD) less than 0.2% over 6 days during the whole
measurement of ∼400 metabolite standards, highlighting the
good accuracy of the DTIM-QTOF-MS instrument (Figure S1,
Tables S4 and S5 in the Supporting Information). The CCS
value for each metabolite was calculated using the single-field
method.38,39 A previous report39 and our results both proved
that relative errors between the single-field measured CCS
values and the multifield measured CCS values for all
metabolites were less than 1% (Figure S2 in Supporting
Information). A calibration curve was first established using the
Agilent tune mix solution containing 6 compounds with known
CCS values. Obtained β and tfix coefficients were applied to
samples to calculate CCS values. All calculations were done
using IM-MS Browser software (version B.07.01, Agilent
Technologies). More details about CCS value calculation
using the single-field method are provided in the Supporting
Information.
SVR Based Prediction Method. Support vector regression

is one of the most widely used machine-learning algorithms.
The basic knowledge of SVR algorithm can be found in the
literature.40 Some applications of SVR algorithm in metab-
olomics41,42 and analytical chemistry43 were recently intro-
duced. Specifically in this work, SVR algorithm implicitly maps
molecular descriptors of metabolites into a high-dimensional

feature space using a kernel function and constructs a
hyperplane in that space to perform the high-dimensional
regression between molecular descriptors and CCS values in
the training data set (Figure 1a). First, in order to achieve the
best regression toward prediction accuracy using SVR
algorithm, parameters of kernel function that was used to
construct the regression hyperplane needed to be optimized
using the training data set. Two common important
parameters, cost of constraints violation (C) and gamma (γ),
were chosen for optimization (Scheme S2 in the Supporting
Information). In total, 85 parameter combinations were
evaluated using the training data set via 10-fold cross-validation.
The parameter combination with minimal mean squared error
(MSE) for prediction was selected for SVR prediction method
(Figure S3 in the Supporting Information). Finally, SVR
prediction method was built using the whole training data set
with the optimized parameter combination. As a result, SVR
prediction method can predict the CCS values for metabolites
utilizing their molecular descriptors. More details about the
SVR prediction method are provided in the Supporting
Information. All data processes and calculations were
performed using open-source software R (version 3.2.3) and
SVR based prediction was performed via the R package e1071
(https://cran.r-project.org/web/packages/e1071).

■ RESULTS AND DISCUSSION
Develop and Optimize SVR Prediction Method. First,

support vector regression algorithm was chosen to develop the
CCS prediction method due to its powerful capability of
nonlinear regression, and 14 common molecular descriptors
were used for prediction. We chose 14 molecular descriptors
related to the metabolite’s size, shape, charge, polarity, and so
on (Table S1 in the Supporting Information). The molecular
descriptors of metabolites were obtained from HMDB. Some
descriptors like the number of rotatable bonds were recently
reported to make a significant contribution to CCS values of
small molecules.28 Descriptor values of each metabolite were
first normalized and standardized to z-scores, which benefited
numerical stability during the machine-learning process.
Then, we measured CCS values of 396 and 400 metabolites

in ESI positive and negative modes, respectively, to serve as a
training data set for prediction method development and
optimization (Excel files 01 and 02 in the Supporting
Information). To the best of our knowledge, this is the largest
measurement data set of metabolite chemical standards to
obtain experimental CCS values. The chosen metabolites
exhibited a wide range of accurate masses (101−1355 Da) and
CCS values (117−338 Å2). In addition, because of the diverse
physiochemical properties of metabolites, multiple ionization
adducts often appeared, like [M + H]+, [M + Na]+, and [M + H
− H2O]

+ for positive ionization. Here, we manually analyzed
each metabolite in the training data set and chose one adduct
for each metabolite for optimization and development of the
prediction method (Figure 2a).
As shown in Figure 1a, utilizing the measured CCS values of

metabolites and their molecular descriptors, we optimized
parameters of the SVR based prediction method. Then, to
validate the performance of the method, 20% of metabolites in
the training data set were randomly selected for internal
validation, and the rest 80% of metabolites were used to
establish the SVR prediction method. For both positive and
negative modes, excellent fits with R2 values of 0.9830 and
0.9813 were obtained, respectively (Figure 2b). Median relative
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errors (MREs) of the comparison were 1.70% and 1.84%, for
data sets of positive and negative modes, respectively. The
results proved that these optimized parameters for SVR
prediction method performed well for CCS value prediction.
Then, SVR prediction method was finally built based on the
whole training data set using optimized parameters. For all 396

metabolites in positive mode, median relative error was 1.60%,
and R2 value was 0.9921 (Table S6). The q2 value of 0.9691 was
obtained via 10-fold cross-validation during method develop-
ment, suggesting that these results were reliable rather than
overfitting. Similar parameter optimization and method
development were performed on negative mode using
molecular descriptors and CCS values from 400 metabolites,
where median relative error was 1.62% and R2 value was 0.9911
(Table S6).
During ESI ionization, one metabolite may form several

adducts. The charge site and shape of ions may change among
different adducts and cause subtle differences to CCS values. In
order to confirm the effective performance of our SVR method
for the prediction for CCS values derived from different
adducts, we randomly chose 43 metabolites with 111 different
adducts in positive polarity (Data was provided in the
Supporting Information) and compared the measured CCS
values of 111 adducts from SVR prediction (Figure S4). A good
linear regression was observed with an R2 value of 0.9655
between predicted and measured CCS values. The median
relative error was 1.73%, indicating the excellent prediction
performance of our SVR method for different adducts. Similar
results were obtained in negative mode, which included 57
metabolites with 136 adducts. Here, the inclusion of
uncommon adducts for comparison, like [M − H2O − H]−,
[M + 2Na − 3H]−, [M + K − 2H]−, aims to demonstrate the
capability of SVR method for the prediction of different
ionization adducts. Overall, these results showed the validity of
SVR based CCS prediction using the complex training data set
and 14 common molecular descriptors.

External Validation and Prediction Performance. We
further evaluated the performance of the SVR prediction
method using an independent set of metabolites (78 and 79
metabolites in positive and negative modes, respectively) other

Figure 2. (a) Statistics of chosen metabolite ion adducts in the training
data set for positive and negative ionizations. (b) Regression curves
between SVR predicted and measured CCS values in internal
validation for positive and negative ionizations.

Figure 3. External validations of CCS prediction across instruments and laboratories: (a,b) regression curves between predicted and measured CCS
values in intrainstrument and intralab validations in positive (a) and negative modes (b); (c,d) regression curves between predicted and measured
CCS values in interinstrument and interlab validations in positive (c) and negative modes (d); (e,f) cumulative curves of relative errors across all
validations in positive (e) and negative modes (f); (g,h) bar graphs of relative errors across all validations in positive (g) and negative modes (h).
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than from the training data set. The CCS values of these
metabolites were measured in both the Agilent IM-MS system
in our lab and Waters Synapt IM-MS system previously
reported by Astarita et al.15 Please note that these metabolites
were not used for prediction method optimization and building,
therefore, referred to as an external validation data set. As
shown in Figure 3, predicted CCS values from the SVR method
matched very well with the experimentally measured CCS
values from the Agilent IM-MS system. The R2 values of
regression curves were 0.9579 and 0.9780 in positive and
negative modes, respectively. Median relative errors were 1.77%
and 1.56% in positive and negative modes, respectively (Figure
3a,b). Please note all the measurements were done in the same
instrument and the same lab, therefore, defined as intrainstru-
ment and intralab validation in Figure 3.
Then, we further compared the SVR predicted CCS values

with measured CCS values from the Waters Synapt IM-MS
system.15 Since these CCS measurements were carried out in
different instruments and laboratories, the comparison was
defined as interinstrument and interlab comparison. Again, the
results showed good prediction precision that the R2 values of
regression curves were 0.9652 and 0.9748 in positive and
negative modes, respectively. Also median relative errors were
3.11% and 1.47% in positive and negative modes, respectively
(Figure 3c,d).
Moreover, we further compared SVR predicted CCS values

of 43 compounds (derived from single-field measurements) to
the experimental CCS values measured by the multifield
method available from the McLean,24 Bush,27 and Schmitz26

groups (Data was provided in the Supporting Information).
The median relative error was 2.07%, and the R2 value of the
regression curve was 0.9338 (Figure S6 in the Supporting
Information). Taken together, it suggested that the SVR
predicted CCS values matched well with experimental

measured CCS values from different instruments and
laboratories even with different measurement methods.
To summarize the performance of the SVR prediction

method, for intrainstrument/lab comparisons, we discovered
that more than 90% of metabolites had predicted CCS values
within 5% of relative errors compared to experimentally
measured values in both positive and negative ionization
modes, while more than 70% of metabolites had predicted CCS
values within 3% of relative errors. The performance was similar
to internal validation using metabolites in training data sets
(Figure 3e−h). We manually analyzed the metabolites with
relative errors larger than 5% and found that the presence of
multiple isomers for one metabolite may be the reason for
inaccurate prediction (Figure S5 in Supporting Information).
However, there is no clear explanation why predicted CCS
values match well with more extended isomers instead of
compact ones. Through comparing against the Waters IM-MS
CCS data set, we discovered that more than 90% of metabolites
had predicted CCS values within 10% relative error in positive
mode, while more than 90% of metabolites had predicted CCS
values within 5% relative error in the negative mode (Figure
3e−h). Therefore, these results demonstrated that our SVR
prediction method had very good predictive capability and
performance and fitted with different instruments and
laboratories.

Precision Improvement Compared to Theoretical
Calculation. Currently, theoretical calculation is widely
employed to obtain CCS values in IM-MS studies. We further
compared the performance of SVR prediction method with the
theoretical calculation method. In the previous work, Astarita et
al. reported 94 and 111 theoretically calculated CCS values for
metabolites in positive and negative modes, respectively.15

These CCS values were obtained from MOBCAL software,
denoted as “Theoretical CCS” in Figure 4. Meanwhile, we also

Figure 4. Precision comparison between SVR prediction method and theoretical calculation method: (a,b) regression curves between SVR predicted
and authentic CCS values in positive (a) and negative (b) modes; (c,d) regression curves between theoretical and authentic CCS values in positive
(c) and negative (d) modes; (e,f) dot plots of the distributions of relative errors in positive (e) and negative (f) modes; (g,h) bar graphs of
cumulative relative errors in positive (g) and negative (h) modes. Authentic CCS value for each metabolite was calculated using mean measurement
value from both Agilent and Waters IM-MS systems.
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obtained the predicted CCS values for these metabolites using
SVR prediction method, denoted as “Predicted CCS” in Figure
4. Then we compared the precision of these CCS values to the
authentic ones. In order to avoid differences between different
instruments and laboratories, authentic CCS value for each
metabolite was calculated using the mean value from both
Agilent and Waters IM-MS systems.
The improved precision was observed for “Predicted CCS”

values in both positive and negative modes. Specifically,
predicted CCS values from SVR method had excellent
precision when comparing with authentic CCS values. The
results showed that the R2 values for the regression curves were
0.9641 and 0.9794, and median relative errors (MREs) were
2.51% and 1.53% in positive and negative modes, respectively
(Figure 4a,b). By contrast, theoretical CCS values had relatively
poor precision when comparing with authentic CCS values.
The results showed that the R2 values for the regression curves
were only 0.9165 and 0.9448, and MREs were as large as 4.18%
and 5.03% in positive and negative modes, respectively (Figure
4c,d). Interestingly, it was observed that most ions have
theoretical CCS values significantly larger than authentic CCS
values, especially for relative larger ions with CCS values larger
than 150 Å2. For instance, adenosine monophosphate (AMP)
had an authentic CCS value of 169.2 Å2, which was very similar
to the predicted CCS value of 166.8 Å2 (1.4% of relative error)
using SVR prediction method. As a comparison, the
theoretically calculated CCS value was as large as 193 Å2

(14% of relative error). The unreasonably large errors in
theoretical calculation may be caused by a larger distribution of
conformational complexity, which leaded to inaccuracy of
averaged molecular conformations. To summarize the results,
we discovered that 82% and 92% of the predicted CCS values
had relative errors less than 5% in positive and negative modes,
respectively. As a comparison, only 55% and 50% of theoretical
CCS values had relative errors within 5% in positive and
negative modes, respectively (Figure 4e−h). These results
supported precision improvement of SVR prediction method in
comparison to theoretical calculation.
Generation of Predicted CCS Database for Metab-

olomics. Recently, the use of CCS values for metabolite
identification in metabolomics has been proven to effectively
increase identification confidence.15,25,26 However, this metab-
olomics workflow suffers from the limited number of available
metabolite CCS values. Here, we demonstrated that using our
SVR prediction method, CCS values for thousands of
metabolites can be readily predicted within 10 min. Taken
HMDB as an example, we successfully predicted 35 203
metabolites with accurate mass between 60 and 1000 Da. In
order to reduce false positives caused by the uncommon
ionization adducts, we only predicted CCS values for five
common adducts such as [M + H]+, [M + Na]+, and [M −
H2O + H]+ in positive mode, and [M − H]− and [M + Na −
2H]− in negative mode for each metabolite, accounting for
176 015 CCS values in total. To the best of our knowledge, this
is the first available large-scale CCS database for metabolomics
study. The predicted metabolite CCS database, namely,
MetCCS, can be freely downloaded from our group Web site
(http://www.metabolomics-shanghai.org/software.php).
In order to demonstrate the applicability of the predicted

CCS database to metabolomics, we analyzed human urine
samples using LC-DTIM-QTOF-MS. Using the IMFE function
from IM-MS Browser software for feature extraction, a total of
3 618 features were detected. A feature is a collection of peaks

from one metabolite including isotopic peaks. Then these
features were searched against to HMDB database (with 35 203
metabolites in total) for metabolite identification. For the
purpose of comparison, two match methods, i.e., m/z match
only and m/z and CCS match, were used for metabolite
identification. Here, we set the Δm/z match tolerances as 15
ppm and ΔCCS match tolerances as 3% to balance the filter
efficiency and to avoid overfiltering (Figure S7 in the
Supporting Information). With the increased ΔCCS match
tolerance, filtering efficiency decreased while the overfiltering
reduced accordingly. As shown in Figure 5a, for m/z match

only search, 2 552 out of 3 618 features (70%) had at least one
metabolite hit. However, for m/z and CCS match, only 1 284
out of 3 618 features (35%) had at least one metabolite hit.
Therefore, 50% of features were filtered using the additional
ΔCCS match. The results demonstrated that the introduction
of CCS values for metabolite identification could significantly
reduce false positive identifications.
As shown in Figure 5b, the percentage of features with less

than three metabolite hits significantly increased with the
additional ΔCCS match. Concurrently, the percentage of
features with more than four metabolite hits decreased with the
additional ΔCCS match. For other biological samples such as
human serum, mammalian cell (Jurkat cells), rat liver tissue,
and Escherichia coli bacteria sample, similar results can be
readily obtained (Figure S8). For example, for the feature
M332T13CCS168 (m/z 332.0746 Da; RT 13.08 min; CCS 168
Å2, Figure 5c), 5 metabolite candidates were obtained in
HMDB using m/z only match method. However, 4 candidates
were further filtered by the additional CCS match. Then the
feature was identified as deoxyadenosine monophosphate

Figure 5. Application of predicted CCS database to metabolite
identification in untargeted metabolomics: (a) number of metabolic
features with metabolite hits using m/z only or both m/z and CCS
match searches; (b) percentage distribution of features with different
metabolite hits from two match methods; (c) number of metabolite
hits for metabolic feature (M332T13CCS168, left panel) and its MS/
MS spectral match with standard deoxyadenosine monophosphate
(dAMP, right panel).
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(dAMP, m/z 332.0760 Da; CCS 166 Å2 in the database). To
confirm the identification of this metabolite, we further
purchased a chemical standard to acquire the standard MS/
MS spectrum and retention time (RT) and validated the
identification (Figure 5c and Figure S9). Overall, these results
demonstrated that the addition of predicted CCS values for
metabolite identification could significantly narrow the search
scope and improve the identification accuracy.

■ CONCLUSION
In conclusion, we developed a SVR algorithm based prediction
method that can utilize the molecular descriptors of a
metabolite to accurately predict its CCS value. The high
precision of the prediction method was externally validated
using an independent set of metabolites with measured CCS
values from different IM-MS instruments and different
laboratories. The results proved that the SVR based prediction
method had a high prediction precision for CCS values with
median relative errors of ∼3%. Then, this prediction method
was used to generate a large-scale predicted metabolite CCS
database, namely, MetCCS, which contains 35 203 metabolites
in total. The whole MetCCS database can be freely download
on the Internet. In this work, since CCS values of metabolites
in the training data set were all acquired in nitrogen buffer gas,
predicted CCS values are all nitrogen CCS values, denoted as
ΩN2. Presumably, this method can also be applied to predict
helium CCS values (ΩHe) if we use helium CCS values of
metabolites as the training data set. Finally, applying this
predicted CCS database to untargeted metabolomics signifi-
cantly reduced false positive identifications of metabolites by
improving identification accuracy. Therefore, we believe that
the MetCCS database will have a broad application in
untargeted metabolomics.
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