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ABSTRACT: The use of collision cross-section (CCS) values Input LipidCCS
derived from ion mobility—mass spectrometry (IM—MS) has been —— — -
proven to facilitate lipid identifications. Its utility is restricted by the Z’:"gfg; 0180y Desoriptors o prediction
limited availability of CCS values. Recently, the machine-learning
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sufficient to differentiate lipids due to their high structural
similarities and subtle differences on CCS values. To address this
challenge, we developed a new approach, namely, LipidCCS, to precisely predict lipid CCS values. In LipidCCS, a set of
molecular descriptors were optimized using bioinformatic approaches to comprehensively describe the subtle structure
differences for lipids. The use of optimized molecular descriptors together with a large set of standard CCS values for lipids (458
in total) to build the prediction model significantly improved the precision. The prediction precision of LipidCCS was externally
validated with median relative errors (MRE) of ~1% using independent data sets across different instruments (Agilent DTIM-
MS and Waters TWIM-MS) and laboratories. We also demonstrated that the improved precision in the predicted LipidCCS
database (15 646 lipids and 63 434 CCS values in total) could effectively reduce false-positive identifications of lipids. Common
users can freely access our LipidCCS web server for the following: (1) the prediction of lipid CCS values directly from SMILES
structure; (2) database search; and (3) lipid match and identification. We believe LipidCCS will be a valuable tool to support
IM—MS-based lipidomics. The web server is freely available on the Internet (http://www.metabolomics-shanghai.org/
LipidCCS/).

Lipids are the major components of cell membranes and separated by ion mobility can be further identified using
play many vital roles in cells such as energy storage, cell collision cross-section (CCS) values.”” > The CCS value
signaling, and interactions with proteins.' > Dysresgulation of derived from IM—MS is a unique physicochemical property of
lipid homeostasis has been validated to associate with several the lipid, and shows high reproducibility across different
major human diseases including diabetes, obesity, cardiovas- laboratories and instruments.”” The addition of CCS values to
cular disease, and Alzherimer’s disease.’”® Lipids have the lipidomics workflow significantly improved the accuracy of lipid
enormous structural diversity varying from the head groups, the analysis.””*”*® However, the limited number of available CCS

position and number of double bonds, and the composition of
acyl chain. In total, about 180 000 lipid species were estimated
in the lipidome.”® Therefore, the comprehensive analysis of
lipids requires powerful analytical techniques to separate and
¥dent1fy them. Mass spectrometry (MS) is one of ‘th(? most theoretical calculation.”**”* For lipids, a very limited number
important techniques for lipid analysis with high sensitivity and P dard {labl btain th . 1
specificity, such as shotgun lipidomics and LC-MS-based of standards are available to obtain the experimental CCS
lipidomic s’ 9-11 values. Theoretical calculation of CCS values was widely
Recentl).f, ion mobility—mass spectrometry (IM—MS) has employed _for sma.ll .m.olecu_les?’1 and peptides.”” However, Fhe
showed great application potential for lipidomics.'>~"® In IM— conforrpatlons of lipid ions in the gas phase are very challenglri%
MS, structurally different lipid ions can be separated rapidly in to be simulated due to 'the complexity of t}'le.hp id structures.
gas phase as a result of many collisions occurring between lipid So far, very few theoretical CCS values of lipids were reported.

ions and inert buffer gas (e.g, nitrogen) under an electric

values for lipids largely restricts the application of IM—MS in
lipidomics.

Two common strategies to generate CCS values are the
experimental measurement of chemical standards and the

field."”'® The previous studies have proven that the use of IM— Received: July 6, 2017
MS provided enhanced peak capacity,'””® improvement of Accepted: July 31, 2017
signal-to-noise,”’ and separation of lipid isomers.”>*° Lipids Published: August 1, 2017
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Figure 1. (a) Optimization and selection molecular descriptors to effectively characterize lipid structures. MD represents molecular descriptor; (b,c)
prediction performance evaluation using all 221 molecular descriptors (b) or 45 optimized molecular descriptors (c); (d) the comparison of the

prediction precision between LipidCCS and MetCCS.

Instead, our previous work successfully demonstrated the use of
a machine-learning algorithm-based approach, namely,
MetCCS, to predict the CCS values of metabolites using 14
molecular descriptors (MDs).*>** The prediction precision has
been externally validated with a median relative error (MRE) of
~3%, and the use of predicted CCS values improved metabolite
identification accuracy. However, the prediction precision of
MetCCS is not enough for lipid identifications since most lipids
have very similar structures and thus very subtle differences on
CCS value. For example, isomeric lipids such as LPE(18:0)
(CCS, 221.5 A?) and LPC(15:0) (CCS, 225.0 A%) have a small
difference of 1.6% on CCS values. In addition, MetCCS
requires the users to self-calculate and manually input 14
different molecular descriptors for prediction.”* This process is
tedious and low eflicient, especially for the compounds which
are not contained in the MetCCS database.

To address these challenges, we have to develop a new
prediction approach that is suitable for lipids with a significantly
improved prediction precision. To do so, we first developed a
bioinformatic approach to optimize the selection of molecular
descriptors for prediction. A combination of molecular
descriptors was generated to precisely describe the subtle
structure differences for lipids, therefore significantly improving
the prediction precision. Specifically, we optimized 45 and 66
out of the 221 calculated molecular descriptors to build the
support vector regression (SVR)-based prediction models for
positive and negative ions, respectively. Second, we exper-
imentally measured a large set of standard CCS values for lipids
(458 in total) to serve as the training data set. Then, our new
prediction approach was externally validated using the
independent external data sets, which have a precision as
high as 1% (MRE). The predicted lipid CCS values from our
new approach fit very well with experimental measurements
from different IM—MS instruments (both Agilent DTIM-MS
and Waters TWIM-MS). We also demonstrated that the
improved precision in predicted CCS values could effectively
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remove false positives in lipid identification and facilitate the
IM—MS-based lipidomics workflow. Finally, to facilitate the use
of CCS values for lipidomics, we created the large-scale
database, namely, LipidCCS, and web server with a user-
friendly graphical interface. Common users can use the web
server for the following: (1) the prediction of lipid CCS values
directly from SMILES structure; (2) LipidCCS database search;
and (3) lipid match and identification. The web server is freely
available on the Internet (http://www.metabolomics-shanghai.
org/LipidCCS/).

B EXPERIMENTAL SECTION

All experiments were performed using Agilent DTIM-QTOF-
MS 6560 coupled with an Agilent UHPLC 1290 (Agilent
Technologies, U.S.A.). All CCS values were obtained using
nitrogen gas and the single-field calibration method as
previously reported.”® Experimental details about the lipid
standards, lipid extraction protocol, and instrument parameters
are provided in Supporting Information.

Measurements of Experimental CCS Values of Lipids.
Lipid standard mixtures (Table S1) were purchased from
Avanti, and they were used to measure experimental CCS
values of glycerophospholipids (PC, PE, PG, PS, PI, PA, LPC,
LPE, LP], LPS) and sphingolipids (SM, Cermide, GlcCer, ST).
Since no glycerolipid standard mixtures were commercially
available, lipid extraction from mouse heart tissue was used to
measure the experimental CCS values of triacylglycerol (TG)
and diacylglycerol (DG). In order to obtain reliable CCS
values, each lipid sample was independently analyzed three
times over 4 months, and CCS values then were averaged as the
experimental CCS values. Before each measurement, both
Agilent tuning mix solution and quality control (QC) sample
were injected and used for CCS calibration and instrument
reproducibility evaluation, respectively. The QC sample
consists of three lipid standards: PE(17:0/17:0) (10 pug/mL),
lysoPC(16:0/0:0) (0.5 ug/mL), and TG(17:1/17:1/17:1) (0.5

DOI: 10.1021/acs.analchem.7b02625
Anal. Chem. 2017, 89, 9559—9566


http://www.metabolomics-shanghai.org/LipidCCS/
http://www.metabolomics-shanghai.org/LipidCCS/
http://dx.doi.org/10.1021/acs.analchem.7b02625

Analytical Chemistry

ug/mL) in MeOH. The relative standard deviation (RSD) and
absolute deviation of lipids in QC samples was less than 0.2%
and 0.3% over 4 months, respectively, demonstrating the
excellent stability and accuracy of IM—MS instrument (Figure
S1, Tables S2 and S3 in Supporting Information). Similarly, the
averaged RSD of experimental lipid CCS values were 0.12%
and 0.16% in positive and negative modes, respectively. The
raw data was processed using Agilent IM—MS Browser for peak
detection, calculation of CCS values and MS/MS extraction.>’
Please note that CCS values were calculated using 6 calibrants
in Agilent tune mix. Both LipidCCS and MetCCS used B.07.01
version of IM—MS Browser. All detected lipids were first
matched against with the LIPID MAPS Structure Database
(LMSD) with a tolerance of 10 ppm. Then, the lipid
identifications were further manually assigned and validated
according to their MS/MS spectra and retention time.
Although the previous publications have reported that the
formation of adducts helps to distinguish the lipid isomers (e.g.,
cis/trans isomers),” "> the difference of their CCS values is too
small (usually less than 1%) to be resolved by most commercial
IM—MS instruments (Figure S2). Therefore, in this work, lipid
isomers such as PC(18:1(11Z)/16:0) and PC(16:0/18:1(6E))
were not differentiated in lipid identification.

Development of LipidCCS Predictor. LipidCCS Pre-
dictor is developed in R programming environment (version
3.3.2). LipidCCS Predictor accepts the input of the SMILES
structure for prediction. The program first calculates the
molecular descriptors of the lipid using the R package “rcdk”
(version 3.3.8) from its SMILES structure. Then, a set of
molecular descriptors are selected and input into the SVR-
based prediction model. For each lipid, CCS values from 5
common adducts are finally reported.

Here, support vector regression (via the R package “e1071”)
is used to build the prediction model (Scheme S1). To build
the model, 329 and 129 experimental CCS values of lipids in
positive and negative modes, respectively, were used as a
training data set. Similar to MetCCS, two parameters in SVR,
cost of constraints violation (C) and gamma (y), were first
optimized to achieve the best prediction performance. Then,
the LipidCCS prediction models were built using the training
data set and molecular descriptors (see details in Supporting
Information). The prediction methods were separately
developed with the same workflow for different ionization
modes.

Optimization of Molecular Descriptors. Molecular
descriptors are a series of numeric values to characterize the
structural and physiochemical properties of one molecule.” For
each SMILES structure of lipids, a total of 221 molecular
descriptors can be calculated by the “rcdk” package. The
optimization and selection of MDs were performed in the
following steps (Figure la). First, 97 out of 221 MDs were
indiscriminate among the lipids in the training data set and
thereby removed. The remaining 124 MDs were stepwisely
optimized using the training data set. Briefly, 2/3 of the CCS
values in the training data set were randomly chosen and used
to build a regression model using the 124 MDs. Then the MD
with the least contribution to the regression model was
stepwisely removed, and the Akaike information criterion
(AIC) value was calculated to evaluate the model quality
relative to the previous models. The process to remove the MD
one by one continues until a minimal AIC value was obtained
(Scheme S2 in Supporting Information). The final combination
of MDs for the prediction model was recorded. More details
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about the stepwise optimization were provided in Supporting
Information. To ensure the reliability on MD optimization
process, this process was repeated 100 times. Then MDs with
frequencies higher than 2/3 were selected (Figure S3). Using
this strategy, 45 and 66 molecular descriptors were finally
selected for the prediction of lipid CCS values in positive and
negative modes, respectively (see Table S4 and SS in
Supporting Information for the list of MDs).

B RESULTS AND DISCUSSION

Development of the Prediction Method with High
Precision. In this work, a new approach, namely, LipidCCS
Predictor, was developed for the precise prediction of lipid CCS
values. One can simply input the SMILES structure of the lipid
to LipidCCS Predictor, and the software automatically
calculates and outputs five CCS values in positive and negative
modes. The prediction takes only several seconds to complete.
The SMILES structures of lipids can be obtained from the
LIPID MAPS Structure Database (LMSD) or other similar
databases.”” To develop the LipidCCS Predictor, we first
measured 329 and 129 lipid CCS values in positive and
negative modes, respectively, to serve as a training data set
(Excel Files 01 and 02 in Supporting Information). Here, all
identified lipids were singly charged, and therefore, Lipid CCS
only supports the prediction of CCS values for the singly
charged lipids. The whole experimental data set has a broad
coverage and diversity, and includes three major categories of
lipids (glycerophospholipids (GP), sphingolipids (SP), and
glycerolipids (GL)), and five common adducts (Figure S4). To
the best of our knowledge, it is the largest experimental data set
of lipid CCS values in IM—MS. Most CCS values of
glycerolipids (TG and DG) were first reported.

Another novel aspect of Lipid CCS compared to our previous
reported MetCCS is the optimization of molecular descriptors
to effectively differentiate lipid structures (Figure la). Most
lipids have very similar physicochemical properties, for example,
glycerophospholipids having subtle differences on the structure
of head groups, the length of acyl chain, and the number of
double bonds. The selection of suitable molecular descriptors
to effectively distinguish different lipids presents a significant
challenge. We first constructed an SVR prediction model using
all the calculated 221 molecular descriptors. The results
demonstrated that the generated model has a very poor
prediction precision with a fitting value R* of 0.1322 in the
internal validation (red square in the Figure 1b). Therefore, a
stepwise optimization of molecular descriptors was performed.
Finally, 45 and 66 molecular descriptors were selected to build
SVR-based prediction model in positive and negative modes,
respectively. Among these molecular descriptors, the m/z value
has the best correlation with the CCS value and is the most
important molecular descriptor. In addition, many topological
descriptors derived from molecular graph were observed to be
important for the prediction (Excel file 09 in Supporting
Information). Using the optimized 45 molecular descriptors in
positive mode, a good prediction precision was obtained with
an R’ value of 0.9941 (Figure Ic). As a comparison, we
randomly selected 45 molecular descriptors to build the
prediction model, which also demonstrated an overfitting effect
similar to the use of all 221 molecular descriptors (Figure SS).
Additionally, taking five PE lipids as examples, the prediction
precision of LipidCCS is significantly improved compared to
our previously reported MetCCS (Figure 1d). Similar results
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negative (h) modes.

were also obtained for selected molecular descriptors in
negative mode (Figure S6).

Finally, with the optimized molecular descriptors, the SVR-
based prediction method was built based on the whole training
data set. The median relative errors were 0.49% and 0.47%, and
R? values were 0.9959 and 0.9964 in positive and negative
modes, respectively (Table S6 in Supporting Information). In
addition, the q2 values from 10-fold cross-validation in method
development are as high as 0.9950 and 0.9957 in positive and
negative modes, respectively, indicating that the prediction
method was not overfitting. Overall, these results demonstrated
that the newly developed LipidCCS Predictor has an excellent
capability for the precise prediction of lipid CCS values.
However, LipidCCS cannot accurately predict the CCS values
of isomeric lipids that differ in position or geometry (cis/trans)
yet, because there are no isomeric lipid standards in the training
data set and the used IM—MS instrument has insufficient
resolution to separate those isomers.

External Validation of High Prediction Precision
Using Independent Data Sets. We further externally
validated the prediction precision of LipidCCS Predictor
using four independent experimental data sets of lipid CCS
values. These data sets were from different laboratories and
instrument platforms (Agilent DTIM-MS and Waters TWIM-
MS), and they were generated using different measurement
methods (Excel Files 03—06 in Supporting Information).””%**
Please note that none of these lipid CCS values were included
in our training data set, or participated in the development of
LipidCCS Predictor. The first external validation data set is the
intralab data set, including 82 and 32 lipid CCS values in
positive and negative modes, respectively. The data was
generated from the same Agilent DTIM-MS instrument in
our lab using the single-field method. LipidCCS Predictor gives
an excellent prediction precision in both positive and negative
ionization modes (Figure 2ab). The R* values of regression
curves were 0.9963 and 0.9937, and the median relative errors
were 0.50% and 0.42% in positive and negative modes,
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respectively. Using the intralab data set, we systematically
compared the prediction precision between LipidCCS and
MetCCS. The results demonstrated that MetCCS has a worse
prediction precision, and the MRE values were 2.6% and 6.7%
in positive and negative modes, respectively (Figure 2c,d, and
Excel Files 07—08 in Supporting Information).

Next, we performed the external interlab validation using
three interlab data sets. Recently, Hines et al. reported the use
of the multifield method in Agilent DTIM-MS to measure the
CCS values of 10 PCs and 14 PEs with the acyl side chain
ranging from 6 to 24 carbons.”® We compared these CCS
values that were not included in our training data set to ones
generated from our LipidCCS Predictor (Figure 2e,f, red dots).
The predicted CCS values fitted well with the experiment CCS
values, with an R* value larger than 0.99 and MRE value less
than 1%. The results proved that LipidCCS Predictor gives
reliable and precise prediction of lipid CCS values with different
acyl lengths, and these predicted values are consistent with the
experimental ones derived from the multifield method in
Agilent DTIM-MS.

Waters TWIM-MS is another widely used IM—MS platform
for lipidomics. In the TWIM-MS platform, CCS values of small
molecules are commonly measured using polyalanine (polyAla)
as the CCS calibrants.*” Recently, Hines et al. found that the
use of structurally similar lipids as the calibrants in TWIM-MS
generates more precise experimental CCS values for lipids.”®
Here, we first compared the lipid CCS values (65 in total)
derived from TWIM-MS instrument using the lipid calibrants
to ones generated from LipidCCS Predictor (Figure 2e,f, blue
dots).”® A good prediction precision was observed that the R*
values of regression curves were 0.9783 and 0.9958 in positive
and negative modes, respectively. Median relative errors were
1.03% and 0.39% in positive and negative modes, respectively.
In addition, we also compared the lipid CCS values derived
from TWIM-MS instrument” using polyAla calibrants to our
prediction results (Figure S7). In contrast, system errors were
clearly observed between the two data sets. Taken together, this
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confirmed that lipid calibrants in TWIM-MS can generate more
precise lipid CCS values, and these values are consistent with
our LipidCCS Predictor.

In summary, the prediction precision of our newly developed
LipidCCS Predictor has remarkably improved to 1% (MRE). It
generates lipid CCS values matched very well with multiple
external validation data sets derived from different ion mobility
techniques (DTIM-MS and TWIM-MS) and different labo-
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ratories. More than 92% of predicted lipid CCS values had less
than 2% of relative errors compared to external experimental
ones in both positive and negative ionization modes (Figure
2g,h). The results also demonstrated the precision improve-
ment of lipid CCS value prediction compared to our previously
reported MetCCS Predictor.

Creation of Large-Scale LipidCCS Database and Web
Server. The addition of IM separation into lipidomics
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effectively improves the selectivity, but this workflow suffers
from the limit number of available CCS values.'>'*'® Here, to
facilitate the use of lipid CCS values for lipidomics, we
generated a large-scale LipidCCS database and an easy-to-use
web server, and three major functions were designed in
LipidCCS (Figure 3):

Prediction of Lipid CCS Values. In the LipidCCS Predictor
page, users can rapidly predict lipid CCS values using lipid
SMILES structures within several seconds. The SMILES
structure can be obtained from ChemDraw or LipidMaps
Database. This function enables the convenient prediction of
the CCS values for novel lipids that are not included in the
LipidCCS database.

LipidCCS Database Search. We predicted 15 646 common
lipids from LMSD, the largest publicly available lipid database,
covering 3 major categories and 22 common lipid classes,
including glycerophospholipids, glycerolipids and sphingolipids
(Figure S8). For each lipid, five common ion adducts were
predicted, including [M+H]*, [M+Na]*, and [M+NH,]" for
positive ionization, and [M—H]~, [M+HCOO]~ for negative
ionization. Finally, a total of 63 434 predicted CCS values of
lipids were deposited into the LipidCCS database, dramatically
improved compared to MetCCS (Figure S9). To the best of
our knowledge, this is the only available large-scale CCS
database for lipids. It should be noted that CCS values of
glycerolipids were predicted only in positive mode due to their
poor ionization efliciency in negative mode. The LipidCCS
allows users to search the lipid CCS values using LipidMaps ID,
chemical formula, and common name. It also supports batch
search function with a maximum of 100 query lines per request.

Lipid Match and lIdentification. In LipidCCS, lipid match
function was designed to help users to identify lipids through
matching experimentally measured m/z and CCS values with
the defined tolerances. For example, one can import the
experimental m/z value of 494.3245 and CCS value of 224.2,
and define the tolerances as 10 ppm and 1% for m/z and CCS
match, respectively. Two lipid hits, LPC(16:1(9E)) and
LPC(16:1(9Z)), are returned immediately through the match
with our LipidCCS database.

Relationship between Lipid Structure and CCS
Values. The CCS values derived from IM—MS can reflect
the structural information on lipids.”” Several previous studies
had reported that CCS values of different lipid classes have
clear trend lines in the 2D plots of m/z and CCS values. >0
Here, we systematically investigated the relationship between
lipid structures and CCS values using precisely predicted CCS
values of lipids. First, the trend lines of each lipid category were
obtained by the power fitting (Table $7).** As shown in Figure
4a, the CCS values of sphingolipids were generally larger than
glycerophospholipids in lower mass range (below 700 Da). For
example, Cer(d18:1/24:0) and PE(14:0/15:0) have similar
exact mass (649.6373 Da vs 649.4683 Da), but the CCS value
of Cer(d18:1/24:0) is obviously larger than PE(14:0/15:0)
(290.0 A? vs 262.4 A% 10.5% relative error). It may be caused
by the presence of longer acyl groups in sphingolipids than
glycerophospholipids. Triglycerolipids generally have larger
CCS values than glycerophospholipids and sphingolipids
especially due to the higher number of acyl groups. More
details about CCS values differences between lipid subclasses
were provided in Supporting Information (Figure S10 and
Table S8 in Supporting Information). For the effect of
headgroup to CCS values of glycerophospholipids, the slopes
of trend lines decrease in the order as PC > PA > PE ~ PG >
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PS > PL Similarly, the decreased order of trend lines for
lysoglycerophospholipids was observed as LPC > LPA > LPG >
LPI > LPE > LPS. Finally, the decreased orders of trend lines,
Cer > SM > GlcCer > ST > Sphingosine and TG > DG, were
observed for sphingolipids and glycerolipids, respectively.

With the precisely predicted CCS values for a variety of lipid
species, it is feasible to evaluate the effect of lipid structures to
their CCS values. Taking PE lipids as examples, we discovered
that ionization adducts (e.g, [M+H]*, [M+Na]*, [M—H]")
influence the CCS values in different degrees, and the addition
of double bonds into the lipid structure causes the reduction of
CCS values (Figure 4b—d). Then, we further quantitatively
evaluated the effect of the double bonds in acyl chain to lipid
CCS values (Figure 4e). For different lipids, the CCS values
were reduced at a rate from 0.4% to 1.9% for one addition of a
double bond in acyl chain. This phenomenon may be explained
by unsaturated double bonds caused the chain to bend to
shorten the molecules.””"" Interestingly, the decrement of CCS
values in TG (0.4%) was obviously lower than other lipids,
which may be caused by complex conformations of TG in gas
phase lessening the effect of double bond to CCS values
(Figure S10). The length of acyl chain is another major factor
to affect CCS values. For most lipids, the CCS values increase
with the length of acyl chain increasing but in different degrees.
Generally, the extending of one carbon in acyl chains causes the
increase of 0.7—1.5% of CCS values for different lipid classes
(Figure 4f). In summary, the effect of lipid structure to CCS
values (or trend lines) varies from lipid classes. Most
importantly, our qualitative analysis results from LipidCCS
predictor were well consisted with the previous re-
ports,””?**%*" which further validated the high precision of
our new approach for lipid CCS value prediction.

Use of LipidCCS to Support IM—MS-Based Lipido-
moics. The CCS values had been validated as an additional
physicochemical property to improve the confidence of lipid
identification.””** To validate, we first analyzed the purified
mixture of PC standards using LC—IM—MS. A total of 100 PC
lipids were identified through m/z match against LipidCCS.
Using the combination of both m/z and CCS matches, only 81
PC lipids were identified (Figure Sa). Here, m/z and CCS
match tolerances were set as 10 ppm and 1%, respectively.
Then, we manually checked the 19 filtered lipids, and we found
that 17 lipids (89.5%) were correctly filtered with only two false
negatives (Figure Sb). Therefore, the addition of the predicted
CCS wvalues to lipid identification can effectively remove the
false positive identifications.

The predicted LipidCCS database was further used to
improve the lipid identification accuracy in complex biological
samples including human plasma, human 239T cell, mouse
brain, and heart tissues (Figure Sc and Figure S11). Taking
human plasma sample as an example, a total of 2284 features
were detected, and 954 features were identified through using
m/z match using a tolerance of 10 ppm. Similarly, only 496
features were remained after the addition of the CCS match
with a tolerance of 1%. In addition, 74.8% features had less lipid
candidates using both m/z and CCS matches compared to m/z
match only, supporting that the use of CCS values effectively
reduced the candidate numbers for untargeted lipidomics
(Figure Sd). More specifically, an average of 12.5 potential
candidates was reduced after the addition of the CCS value
match with 1% tolerance (Figure Se). For example, feature
MS544T73CCS230 (m/z 544.3407 Da; RT 73 s; CCS 230.1 A?)
had 13 potential lipid candidates using m/z match only (Figure
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Figure S. (ab) Use of LipidCCS to reduce the false positive
identifications of lipids in the purified mixture of PC standards: (a) bar
plot of identified PC lipids using two match methods; (b) manual
verification of the accuracy of the filtered lipids. (c—f) Use of
LipidCCS to support IM—MS-based untargeted lipidomics: (c) in
human plasma sample, statistics of identified lipid features using two
match methods; (d) dot plot for the feature distribution with the
decreased candidates after the additional CCS match; (e) statistics of
the averaged numbers of decreased candidates after the additional
CCS match; (f) number of lipid hits for the feature
(M544T73CCS230).

5f). After the addition of the CCS match, only 2 candidates
remained, namely, PC(20:4(5Z,8Z,11Z,14Z)/0:0) and PC-
(20:4(8Z,11Z,14Z,172)/0:0). This feature can be further
assigned as LPC(20:4), because two isomers are difficult to
be resolved by IM—MS. The identification result was also
confirmed using MS/MS spectrum against with in-house
predicted MS/MS database of lipids (Figure S12). As a
comparison, 12 potential candidate lipids were given using a
CCS match tolerance of 3% (similar to MetCCS prediction
precision). Overall, these results demonstrated that the high
precision predicted LipidCCS database facilitated lipid
identification for IM—MS-based untargeted lipidomics.

H CONCLUSION

In conclusion, we developed a new approach, namely,
LipidCCS Predictor, to precisely predict CCS values of lipids.
A large-scale and diverse data set including 458 experimental
lipid CCS values was used as the training data set. A novel
method was developed to optimize molecular descriptors and
significantly improved the prediction precision. As a result, the
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prediction precision of LipidCCS Predictor was externally
validated with a median relative error (MRE) of ~1% across
different instruments and laboratories using independent
external data sets. The predicted CCS values from LipidCCS
Predictor match very well with ones derived from Agilent
DTIM-MS using both the single-field and multifield methods,
as well as Waters TWIM-MS using the lipid calibrants, but they
do not match well with the ones derived from TWIM-MS using
polyAla as the calibrants. Then, the prediction approach is used
to generate the large-scale CCS value database, namely,
LipidCCS database, which contains 15 646 lipids and 63 434
CCS values in total. To facilitate the use of LipidCCS for
lipidomics, a web server with user-friendly interface was
created. Utilizing the LipidCCS database, we further system-
atically investigated the relationship between lipid structure and
their CCS values, and we validated the use of LipidCCS
database to effectively reduce false positive identifications of
lipids in untargeted lipidomics. In the future, the combination
of the predicted CCS values with other common properties
(e.g, MS/MS, retention time) could further increase the
accuracy of lipid identification. Therefore, we believe that the
LipidCCS will be a valuable tool to support IM—MS-based

lipidomics.
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