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Abstract

Summary: Ion mobility—mass spectrometry (IM-MS) has showed great application potential for

lipidomics. However, IM-MS based lipidomics is significantly restricted by the available software

for lipid structural identification. Here, we developed a software tool, namely, LipidIMMS Analyzer,

to support the accurate identification of lipids in IM-MS. For the first time, the software incorporates

a large-scale database covering over 260 000 lipids and four-dimensional structural information for

each lipid [i.e. m/z, retention time (RT), collision cross-section (CCS) and MS/MS spectra].

Therefore, multi-dimensional information can be readily integrated to support lipid identifications,

and significantly improve the coverage and confidence of identification. Currently, the software

supports different IM-MS instruments and data acquisition approaches.

Availability and implementation: The software is freely available at: http://imms.zhulab.cn/LipidIMMS/.

Contact: jiangzhu@sioc.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Lipids play many vital roles in cell biology such as membrane consti-

tution, energy storage and cell signaling (Han, 2016). The compre-

hensive study of lipids (i.e. lipidomics) provides mechanistic insights

to many important diseases such as diabetes, cancer and neurodege-

nerative diseases (Han, 2016). The high complexity of lipidome

presents a great challenge for lipidomics, which requires powerful

analytical techniques to separate and identify lipids. Recently, ion

mobility—mass spectrometry (IM-MS) has become a promising

technology for lipidomics by providing high separation capacity,

high sensitivity and selectivity and capability to distinguish lipid iso-

mers (Hinz et al., 2018; Zheng et al., 2018). Coupling IM-MS

with liquid chromatography and data-independent tandem MS

techniques (e.g. MSE and AIF) further enables the comprehensive

acquisition of four-dimensional information of lipids in one analysis,

including m/z of MS1, retention time (RT), collision cross-section

(CCS) and MS/MS spectra (Hines et al., 2017; Paglia and Astarita,

2017; Zhou et al., 2018). The integration of multi-dimensional in-

formation provides a holistic characterization of lipid structures and

supports the large-scale and unambiguous identification of lipids in

complex biological samples.

However, IM-MS based lipidomics is significantly restricted by

the availability of software tools for data analysis, especially for

lipid structural identification. Some tools have been developed to

process IM-MS based lipidomics data, such as LC-IMS-MS Feature

Finder (Crowell et al., 2013), vender software Mass Profiler

(Agilent) and Progenesis QI (Waters). Nevertheless, accurate lipid

identification has not been sufficiently achieved since limited
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information was used for identification (e.g. MS1þCCS and

MS1þMS/MS). More importantly, the sizes of embedded libraries

in these programs (e.g. CCS library and MS/MS library) are very

limited, which further restricts the coverage of lipid identifications

in complex biological samples.

Here, we present a freely available webserver, namely,

LipidIMMS Analyzer, to integrate four-dimensional information for

lipid identification in IM-MS based lipidomics (Fig. 1a). For the first

time, the software includes a large-scale database covering over 260

000 lipids and four-dimensional structural information for each

lipid (i.e. m/z, RT, CCS and MS/MS spectra). Therefore, confidence

and coverage of lipid identifications in complex samples is signifi-

cantly improved. The software supports different data acquisition

approaches (e.g. LC-IM-MS and direct infusion-IM-MS) and differ-

ent IM-MS instruments (e.g. Agilent and Waters).

2 Methods and features

2.1 General workflow
LipidIMMS Analyzer webserver provides an interactive workflow

for users to perform lipid identification using IM-MS based lipido-

mics data (Fig. 1b): (i) data import of a MS1 peak table and/or MS/

MS data; (ii) database loading; (iii) RT calibration; (iv) m/z, RT and

CCS match and score; (v) MS/MS spectral match and score; (vi)

composite score calculation and (vii) download and browse results

of lipid identifications. More details are provided in Supplementary

Information.

2.2 Four-dimensional lipid database
In LipidIMMS Analyzer, a large-scale lipid database with four-

dimensional information is developed to support lipid identification.

2.2.1 Dimension 1: MS1 library

Lipid structures were created using the template-based combinator-

ial enumeration (Sud et al., 2012). The template allows the length of

acyl chains varying from 2 to 39 and the number of double bonds

varying from 0 to 6. A total of 267 716 lipid structures were gener-

ated covering four categories (glycerophospholipids, sphingolipids,

glycerolipids and fatty acids) and 25 classes (Supplementary

Table S1).

2.2.2 Dimension 2: Retention time library

Retension time values for all lipids were predicted using a random

forest algorithm. RT on both reverse phase (RP) and hydrophilic li-

quid chromatography (HILIC) columns were predicted using differ-

ent training sets (Hines et al., 2017; Zhou et al., 2017) and

molecular descriptors (Supplementary Table S2 and Fig. S1). The

prediction accuracy was validated using another 78 and 35 RTs

with median errors of 7 and 1 s for RP and HILIC columns, respect-

ively (Supplementary Fig. S2). To accommodate different LC condi-

tions, RT values in the library could be re-calculated using the RT

calibration method. One example is given to demonstrate the re-

calibration error between two different LC systems was about 5 s

(median error, Supplementary Tables S3–S5 and Fig. S3).

2.2.3 Dimension 3: Collision cross-section library

The CCS values were predicted using our previous developed soft-

ware—LipidCCS (Zhou et al., 2017). A total of 375 565 CCS values

were predicted for different ion adducts. The coverage of the CCS li-

brary is significantly larger than our previous LipidCCS library (63

434 CCS values).

2.2.4 Dimension 4: MS/MS spectrum library

The MS/MS spectra of lipids were predicted using the fragmentation

rules (Kind et al., 2013; Tu et al., 2018). These rules were manually

summarized according to experimental MS/MS spectra acquired

using lipid standards. A total of 375 565 MS/MS spectra were gener-

ated covering five common adducts. For each MS/MS spectrum,

structural annotations of fragments were also provided.

2.3 Integration of multi-dimensional information
The combination of m/z, RT, CCS and MS/MS spectra for lipid

identification can effectively improve the confidence. Frist, library

match in each dimension was separately scored. A trapezoidal func-

tion was designed to score the RT and CCS matches, and a reverse

dot-product function was used to score the MS/MS spectral match.

Then different dimensional scores were integrated to calculate the

composite score with a linear weighting function. LipidIMMS

Analyzer features a high flexibility and versatility. Users could select

different combinations to perform lipid identifications according to

their requirements (e.g. MS1þMS/MS, MS1þRTþCCS,

MS1þRTþCCSþMS/MS and so on).

Fig. 1. (a) Integration of multi-dimensional information to support lipid identification in IM-MS based lipidomics and (b) the data analysis workflow of LipidIMMS

Analyzer
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3 Results

To demonstrate the performances of LipidIMMS Analyzer, we used

a series of lipid standards and multiple biological samples. Results in

Supplementary Table S6 demonstrated that the confidence of lipid

identifications was effectively improved by matching multi-

dimensional information. The software could distinguish different

lipid isomers (Supplementary Figs S5–S7) including isomers from

different classes, isomers with different acyl chains, and sn1/sn2 pos-

itional isomers. Finally, using our software, a total of 500–600 lipids

covering four lipid categories could be identified in different bio-

logical samples, such as human plasma, mammalian cells, and

mouse brain tissue (Supplementary Figs S8–S10).

4 Conclusion

LipidIMMS Analyzer is a freely available webserver to support lipid

identification in IM-MS based lipidomics. It incorporated a large-

scale lipid database with four-dimensional information to perform

accurate lipid identifications with a broad coverage and high

confidence.
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