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One Sentence Summary: Machine-learning based gestational age and due date using 

longitudinal urine samples of pregnancy. 

 

Abstract: Pregnancy is a critical time that has long-term impacts on both maternal and fetal 

health. During pregnancy, the maternal metabolome undergoes dramatic systemic changes, 

although correlating longitudinal changes in maternal urine remain largely unexplored. We 

applied an LCMS-based untargeted metabolomics profiling approach to analyze 346 longitudinal 
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maternal urine samples collected throughout pregnancy for 36 women from diverse ethnic 

backgrounds with differing clinical characteristics. We detected 20,314 metabolic peaks and 

annotated 875 metabolites. Altered metabolites include a broad panel of glucocorticoids, lipids, 

and amino acid derivatives, which revealed systematic pathway alterations during pregnancy. 

We also developed a machine-learning model to precisely predict gestational age (GA) at time of 

sampling using urine metabolites that provides a non-invasive method for pregnancy dating. This 

longitudinal maternal urine study demonstrates the clinical utility of using untargeted 

metabolomics in obstetric settings. 

Main Text: 

INTRODUCTION 

The accurate dating of GA provides essential guidelines for the prenatal medical care. Current GA 

dating approaches based on the last menstrual period (LMP) are problematic given imprecise 

recollection of dates and symptoms like breakthrough bleeding in early pregnancy, which may be 

mistaken for a period (1-3). Fetal ultrasound is the most precise current measure of GA, but is 

limited by both timing and access to resources (4-8). GA dating is more accurate the earlier an 

ultrasound is performed, and optimal pregnancy dating can be achieved prior to 20-weeks (9-11). 

However, this also requires both sophisticated equipment and well-trained sonographers (6, 8, 12-

14). Thus, more affordable, accessible, and accurate GA dating methodology represents an unmet 

clinical need, particularly for pregnant women across diverse socio-economic backgrounds. 

 

Recent developments in omics profiling technology provide new possibilities for characterization 

of both normal and high-risk pregnancies. Pregnancy is a highly dynamic programmed process 

that induces a broad spectrum of changes in the maternal transcriptome, proteome, and 
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metabolome (15, 19). Notably, the metabolome, as the direct outcome of diverse biochemical 

reactions, is a highly sensitive readout of metabolic regulation during pregnancy (20-21). 

Investigation of longitudinal maternal metabolomic alternations over the course of pregnancy has 

the potential to be a highly informative approach for mechanistic investigation and a breakthrough 

tool for GA dating. This approach has recently attracted more attention (21, 33, 34) but has relied 

mostly on maternal blood samples (21, 35-37). Use of maternal urine for GA dating and metabolic 

profiling has yet to be explored and may provide a cost effective and non-invasive method that 

could be easily translated into clinical settings. If found to be useful, it would transform the prenatal 

care, especially in under-resourced regions.  

 

Thus far, pregnancy-related metabolic research has focused primarily on identifying biomarkers 

as indicators of risk for adverse pregnancy outcomes like preeclampsia, preterm birth, and 

gestational diabetes (22-29). Emerging data suggests, however, that increased surveillance of 

metabolomic changes during pregnancy may also provide improved opportunities for 

understanding of maternal metabolic alterations at differential gestational ages (GA), stratify risk-

based biomarkers by clinical benefit, and to better elucidate the pregnancy process (21, 30-32). 

 

In this study, we profiled longitudinal urine samples collected from 36 pregnant women receiving 

prenatal care in public and private clinics in San Francisco and annotated a large number of urine 

metabolites correlated with pregnancy progression. Using this data, we investigated potential 

alterations in maternal metabolic pathways throughout pregnancy and used this data to predict GA. 

Although the pregnancy induced metabolome alternations are highly personalized, we were able 

to identify such individualized alternations. 
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RESULTS 

Study Design of the SMART-D Pregnancy Cohort 

This observational study aimed to assess whether the urine metabolome in pregnancy could be 

used to identify dynamic metabolic changes during pregnancy and predict GA by week. To do 

this, we used urine samples collected from 36 pregnant women receiving prenatal care in San 

Francisco who were recruited into the SMART Diaphragm (SMART-D) study between November 

2014 and October 2018 (Fig. 1a). The SMART-D study developed and iterated a patient-

controlled, vaginally inserted device that detects microscopic changes in cervical collagen 

structure to provide earlier predictions of preterm birth risk and open a new potential treatment 

window. Diverse samples were collected during longitudinal visits over the course of pregnancy 

and postpartum periods, including urine samples, cervical-vaginal swabs, etc., together with 

detailed clinical and device measurement data. Urine samples used for analyses in the present 

study were collected as part of the SMART-D study protocol wherein at least one urine sample 

from each participant was collected for each trimester. Each participant contributed 3 - 13 samples 

throughout pregnancy; overall, each week of pregnancy after 15 weeks was represented by at least 

one sample across participants (Fig. 1a, Methods). High-resolution liquid chromatography-mass 

spectrometry (LC-MS) was used to characterize the metabolome of all collected urine samples 

(Methods). 

 

Participants of diverse backgrounds were included in the SMART-D study from which these 

samples are derived (Fig. S1a). The 36 participants in the cohort were comprised of five ethnicities 

(Asian, Black, Latina, Pacific Islander, and White), with ages ranging from 21 to 39 years old. The 
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pre-pregnancy body mass index (BMI) of participants varied from 19.5 to 57.2. Parity ranged from 

1 to 9. Detailed characteristics for all participants are provided in Table S1. The high-density 

sampling design of the SMART-D study enabled the close monitoring of dynamic metabolome 

alterations of women throughout pregnancy.  

 

Figure 1. Overview of urine collected as part of the Smart-D study. (a) The sampling time 

points for individual participants. Each row represents an individual participant. The histogram 

and bar on the top and the right show the number of samples collected at each gestational age 
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range (bin width = 0.5 weeks) and from each individual participant, respectively. Orange dots 

represent samples taken during pregnancy, blue dots represent samples taken after childbirth, and 

black triangles represent childbirth. (b) Principal Component Analysis (PCA) distributed 

individual urine samples according to gestational age (based on metabolic peaks with QC RSD < 

30%). The two PCs explaining the largest part of the variation are shown. (c) The volcano plot 

shows the altered metabolic peaks during pregnancy, using the linear regression model (FDR 

adjusted P-value < 0.05) and SAM test (FDR adjusted P-value < 0.05). Red dots represent 

metabolic features that increased during pregnancy and blue dots represent features that 

decreased during pregnancy. 

Red dots represent increased metabolic peaks according to pregnancy and blue dots represent 

decreased metabolic peaks according to pregnancy. (d) Unsupervised k-means consensus-

clustering analysis of 3,020 altered metabolic features clustered into three groups. Postpartum 

samples (represented by red in the GA legend) were clustered with early pregnancy samples.  

 

The Urine Metabolome Accurately Reflects Metabolic Alterations During Pregnancy  

Untargeted high-resolution metabolomics was performed on all collected urine samples. After data 

processing (peak detection and alignment) and cleaning (missing value processing, normalization 

and batch integration, outlier removal), we detected 20,314 metabolic peaks (or metabolic features, 

characterized by unique accurate mass and retention time) including 15,398 and 4,916 metabolic 

peaks in positive and negative modes, respectively. Forty-four samples were removed as outliers; 

302 samples remained for all subsequent analyses (Fig. S1b, Methods). Quality of urine 

metabolomics data was assessed using Principal Component Analysis (PCA), which showed no 

batch effect. Additionally, most QC samples clustered tightly in the center among samples in 
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positive, negative, and combined datasets (Fig. S2), indicating the high quality of our acquired 

metabolomics dataset. In addition, PCA including all metabolic peaks with QC RSD < 30% 

revealed a continuous separation between samples from early and later GA (Fig. 1b). Interestingly, 

the postpartum urine samples most closely resemble early GA urine samples (Fig. 1b). 

Additionally, most individual participants followed the same patterns of metabolic change as the 

overall dataset. (Fig. S3).  

 

Overall metabolome alterations during pregnancy were then examined. Significance analysis for 

microarrays (SAM) and linear regression model (acquisition batch, BMI, mother age, parity, and 

ethnicity were adjusted as confounders) were utilized to discover altered metabolic peaks during 

pregnancy (SAM FDR < 0.05 and linear regression model FDR < 0.05, Methods). 14.87% of all 

detected metabolic peaks (3,020 out of 20,314 peaks, with 2,436 and 584 metabolic peaks in 

positive and negative modes, respectively) were significantly altered during pregnancy (Fig. 1c). 

Altered metabolic peaks were then used for unsupervised k-means consensus-clustering (Fig. S4, 

Method). Three robust clusters clearly correlated with gestational age were detected, namely 

cluster 1: 10-26 weeks, cluster 2: 26-32 weeks, and cluster 3: 32-42 weeks (Fig. 1d). Additionally, 

consistent with results from PCA, almost all samples after childbirth were included in cluster 1, 

which contains most of the early GA samples, suggesting that the urine metabolome rapidly 

returned to baseline and reflected early GA patterning. Taken together, these results demonstrated 

that a high-quality urine metabolome accurately reflects systemic metabolic alterations throughout 

pregnancy. 

 

Functional Metabolic Network and Alteration of Pathways During Pregnancy  
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An important strength of this study is the high-density urine sampling, which offered a more 

detailed view of the altered metabolic regulation at each stage of pregnancy. Because sampling 

times varied between participants, samples were assigned to 14 GA ranges ((10, 16] (baseline), 

(16, 18], (18, 20], (20, 22], (22, 24], (24, 26], (26, 28], (28, 30], (30, 32], (32, 34], (34, 36], (36, 

38], (38, 42] and [PP) (postpartum)). To ensure the robustness and reproducibility of the statistical 

analysis, each GA range included at least 10 subjects and 10 samples. Altered metabolic peaks 

were identified using the Wilcoxon signed-rank test (FDR adjusted P-value < 0.05) for each GA 

range compared to the baseline GA range (10-16] (Fig. 2b). In order to assess the robustness of 

the identified altered metabolic peaks, we assessed whether peaks remained significantly altered 

in each of the subsequent GA ranges (except the PP range) and found that 84.83% of the identified 

peaks remained significantly altered in each of the GA ranges, suggesting a predictable 

overarching pattern of changes in metabolic features across pregnancy (Fig. S5). 

 

A number of altered metabolic peaks were found to be clearly increased from early to late GA 

range during pregnancy (Fig. 2b), which is consistent with the PCA (Fig. 1b) and k-means 

consensus-clustering results (Fig. 1d). After childbirth, the number of altered metabolic peaks 

dramatically decreased compared to baseline. Based on the number of altered metabolic signatures 

of maternal urine, it was determined that pregnancy metabolic signals could be divided into four 

distinct periods, namely 10-18 weeks (no altered metabolic peaks), 18-26 weeks (altered metabolic 

peaks: 1-34), 26-34 weeks (altered metabolic peaks: 254-445) and 34-42 weeks (altered metabolic 

peaks: 849-1,012). These results matched the clusters from the unsupervised consensus-clustering 

described above (Fig. 1d).  
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In order to explore whether specific metabolic networks (or modules) were altered at different GA 

ranges over the pregnancy process, altered metabolic peaks were processed using PIUMet (54)  

and a network of altered metabolites was identified for each GA range. All annotated metabolites 

were then used to build a cross-sectional correlation network based on their Spearman correlations 

across our cohort (Fig. 2c and Method). In this correlation network, nodes (N) correspond to 

annotated metabolic peaks and edges (E). Two nodes being connected means that the correlation 

between those nodes is significant (FDR adjusted P-value < 0.05) and strong (absolute Spearman 

correlation > 0.5). The resulting cross-sectional correlation network contained 160 nodes and 1,148 

edges. Interestingly, 80.4% of annotated metabolites from PIUMet (160 of 199) appeared in the 

correlation network. The topology of the network suggests that dense interactions occur between 

altered metabolites. Although metabolite levels change dynamically throughout pregnancy (Fig. 

1d), it appeared clear that these changes are highly coordinated by a regulatory network. 

 

We also examined the main clusters (or subnetworks) of related measurements from the correlation 

network using the community analysis method based on edge betweenness centrality, an 

unsupervised approach that iteratively prunes the network (removing the edges with the highest 

betweenness centrality) to reveal densely interconnected subgroups (clusters). From this, we 

detected 20 clusters with a modularity of 0.30. Seven clusters with at least 5 nodes were selected 

for subsequent analysis (Fig. 2c and Fig. S6a). Compared to the original correlation network, the 

7 clusters retained 76.25% of nodes and 96.95% of edges remaining after edge punning, suggesting 

that the 7 clusters represented most of the correlations in the original network. These clusters may 

represent physiologically-related and -correlated metabolites during pregnancy.  
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We assessed the alterations of the 7 clusters during pregnancy by cluster and by the intensity of 

metabolic features, respectively (Fig. S6b, c). Only clusters 2 and 3 showed consistent changes 

during pregnancy at both cluster and metabolite level. Cluster 2 is the largest cluster (75 nodes and 

963 edges) and contains lipids and lipid-like molecules (51 of 75, Fig. 2d), suggesting this cluster, 

including many steroids, represents a lipid-related metabolic regulation network during pregnancy. 

To investigate the physiological functions of this cluster, we then calculated the frequency of 

pathways to which all metabolites in cluster 2 belong. We found the top seven pathways were 

steroid hormone biosynthesis, ovarian steroidogenesis, cortisol synthesis and secretion, 

aldosterone synthesis and secretion, the prolactin signaling pathway, and aldosterone-regulated 

sodium reabsorption and bile secretion (right panel in Fig. 2d). Intriguingly, levels of cluster 2 

metabolites increase throughout pregnancy (Fig. 2e) and exhibited a rapid increase in week 18 and 

week 26, which is consistent with the periods defined in Fig. 1d and Fig. 2b. Cluster 3 metabolites 

follow similar trends as cluster 2 metabolites during pregnancy (Fig. S6b, c). Cluster 3 contains 5 

metabolites (3-methylguanine, 7-methylguanine, L-phenylalanine, asymmetric dimethylarginine, 

and (S)-3-hydroxy-N-methylcoclaurine) and no single pathway mapped to more than 1 metabolite 

(Fig. S6c). However, 4 out of 5 are amino acid modification metabolites, suggesting cluster 3 was 

related to the amino acid metabolism.  

 

To further explore the altered metabolic pathways of pregnancy, pathway enrichment analysis was 

done using PIUMet for each GA range (based on the KEGG database). Thirteen pathways were 

selectively enriched for at least one GA range - most of which increased during pregnancy (FDR 

adjusted P-value < 0.05 and overlap ≥ 3, Fig. 2f). All 13 pathways were assessed and it was found 

that 6 were consistent at the metabolite and pathway level (Fig. 2g, h), namely steroid hormone 
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biosynthesis, cortisol synthesis and secretion, ovarian steroidogenesis, the prolactin signaling 

pathway, aldosterone synthesis and secretion, and phenylalanine, tyrosine, and tryptophan 

biosynthesis. Five out of 6 pathways overlapped with the pathways in the regulated network 

(cluster 2) as described above.  
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Figure 2. The dynamic changes of the urine metabolome during pregnancy. (a) Subject and 

sample numbers in each GA range. (b) The altered metabolic peaks in each GA range compared 
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to baseline (10-16 weeks). The number of decreased and increased metabolic peaks are shown 

(decreases in green, increases in red). (c) The correlation network utilized the annotated metabolic 

peaks from PIUMet. Each color represents clusters identified using community analysis. (d) 

Cluster 2 which is identified utilized community analysis and changes are consistent in the cluster 

and at metabolite level (Fig. S6). The frequency of pathways of each metabolite is shown on the 

right panel. (e) The change of cluster 2 during pregnancy. The dots represent the mean values of 

cluster 2 in different GA ranges and the bars represent the standard error of the mean (SEM). (f) 

Altered pathways during pregnancy in each GA range. (g) This heatmap shows the changes of 6 

metabolic pathways in metabolite (metabolic peak) level. (h) Ridgeline plot shows the changes of 

6 metabolic pathways in pathway level. 

 

Gestational Age Prediction Using the Urine Metabolome Model  

An accurate and noninvasive method of estimating gestational age has the potential to inform 

prenatal and neonatal care in instances where dating is uncertain. To this end, we examined 

whether the urine metabolome could be used to estimate gestational age. Urine samples during 

pregnancy were assigned to training (16 subjects, 125 samples) validation (20 subjects, 156 

samples) datasets by acquisition batch (Fig. S1b). The demographics and birth characteristics of 

training and validation datasets were not significantly different (P-value > 0.05, Table S1).  

 

The prediction model was constructed by starting with all metabolic peaks for feature selection 

based on the Boruta algorithm (see Methods). We then removed the metabolic peaks without 

acceptable peak shapes, with the remaining 28 metabolic peaks as potential biomarkers, and used 

these biomarkers to build a Random Forest prediction model (Methods, Table S2, Fig. S7a). The 
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training dataset was utilized as the internal dataset and to validate prediction accuracy using the 

bootstrap method (1,000 times; see Methods). The root mean squared error (RMSE) between 

actual and predicted gestational age (weeks) was found to be 2.35 weeks and adjusted R2 was 0.86 

(Pearson correlation r = 0.93; P-value < 2.2×10-6) (Fig. S7b). For the external validation dataset, 

the RMSE was 2.66 weeks and the adjusted R2 was 0.79 (Pearson correlation r = 0.89; P-value < 

2.2×10-6) (Fig. S7c). This result demonstrated that the prediction model is not overfitting. Overall, 

our results demonstrated that the urine metabolome may be useful for accurately predicting 

gestational age. 

 

The impact of patient demographics on prediction accuracy was also assessed. Maternal BMI, age, 

parity, and ethnicity were included with 28 metabolic peaks to construct a prediction model. The 

RMSE of this model was 2.70 and adjusted R2 was 0.76, which demonstrated no significant 

differences compared to the prediction model utilizing 28 metabolic peaks. Inclusion of subject 

demographics minimally improved prediction accuracy. 

  

Table 1. Demographics and birth characteristics of the training and validation dataset. 

 Training Validation P-value 

 n = 16 n = 20  

Demographics    

Maternal age at birth (years, mean ± sd) 31.00 ± 5.27 31.80 ± 5.35 0.7491a 

Previous births (no.)    

1 4 3 

0.7417b 

>=2 12 17 

Pre-pregnancy BMI (kg/m2, mean ± sd) 25.2 ± 4.85 28.6 ± 8.48 0.1783a 
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Ethnicity (no.)    

Asian 2 4 

0.1184b 

Black 6 3 

Latina 2 7 

Pacific Islander 0 2 

White 6 3 

Other 0 1 

Birth characteristics    

Gestational age (days, mean ± sd) 270.25 ± 18.32 274.00 ± 10.36 0.8859a 

Birth weight (gram, mean ± sd) 3,538.75 ± 885.18 3,169.00 ± 594.67 0.4928a 

Induction (no.)    

Yes 6 5 

0.8261b No 10 5 

Unknown 0 10 

 

a. Wilcoxon rank-sum test used for non-normally distributed continuous data. b. Chi-squared test 

for categorical data. c. Not available. 

 

Prediction of Gestational Age at the Individual Level 

  We demonstrated that the pregnancy urine metabolome could accurately predict gestational age 

with 28 metabolic peaks using a Random Forest model. Metabolic peaks were annotated using the 

in-house MS2 pipeline based on in-house and public MS2 databases (Methods). While 875 of 

20,314 total level 1 or level 2 metabolites were annotated in the full dataset, only 5 out of the 28 

metabolic peaks in our final model were annotated (Table S2). Therefore, we further used the 875 

annotated metabolites to predict gestational age in individual patients. After feature selection based 

on the Boruta algorithm (see Methods), 32 metabolites were selected as potential biomarkers. To 
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ensure the robustness and reproducibility of our prediction model, we excluded those metabolites 

without acceptable peak shapes, then manually screened and excluded metabolites without good 

MS2 spectral matches (Fig. S8, Fig. S9, and Methods). Finally, 21 metabolites were included as 

the final biomarkers to build the prediction model in the training dataset (Fig. 3a, Table S3). To 

create an overview of the 21 metabolite biomarkers, we utilized the Classyfire algorithm (55) to 

access their chemical class information. Interestingly, most of the metabolite biomarkers were 

lipids and lipid-like molecules (e.g., hormones) (Fig. 3a, Table S3), such as 5α-preganane-3, 20-

dione, pregnenolone, and progesterone, which is consistent with our previous findings from 

maternal plasma (21, 38-40). Most of these metabolites had high ranks in the prediction model 

(ranks: 2, 4, 6, 7, 8, 9, 11, and 16; importance ratio: 44.12%; Fig. 3a and Fig. S10). Importantly, 

the 21 metabolite biomarkers achieved a prediction accuracy for gestational age comparable to the 

model that used metabolic features. Specifically, the adjusted R2 are 0.81 (Pearson correlation r = 

0.90, P-value < 2.2×10-6) and 0.77 (Pearson correlation r = 0.87, P-value < 2.2×10-6) for internal 

and external validation datasets, respectively (Fig. 3b and c). The RMSE were 2.89 and 2.97 

weeks for internal and external validation datasets, respectively (Fig. 3b and c). To avoid 

overfitting, a 1,000-time permutation test was performed, and the results suggest that our model is 

not overfitting (Fig. S11). Intriguingly, we also found that model performance improved 

significantly as the pregnancy progressed. As Fig. 4c and d show, the RMSE for both training 

(RMSE = 4.71 for the first trimester, 2.81 for the second trimester, 2.82 for the third trimester) and 

validation datasets (RMSE = 7.30 weeks for T1, 3.14 for T2, 2.81 for T3) increased from the first 

trimester to the third. In addition, we found that there was no significant difference in the prediction 

accuracy compared to the prediction model using metabolic peaks, especially in the validation 

dataset (metabolite model vs. metabolic peak model: RMSE = 2.97 vs. 2.66 weeks and adjusted R2 
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= 0.77 vs. 0.79). These results suggest that we can use urine metabolite biomarkers to predict 

gestational age, which has important potential clinical applications. These findings were also 

applied to gestational age estimation for individual participants. For the external validation dataset, 

16 of the 20 participants had adjusted R2s larger than 0.75 (Fig. 3d and Fig. S12, and Table S4). 

These results indicate that our prediction model is also robust for individual prediction. Since our 

cohort includes women with diverse demographic and clinical characteristics (Fig. S1a, and Table 

S1), this also suggests that our prediction model has utility for pregnant women from diverse 

backgrounds. Our cohort includes a nearly two-decade age range, infant birth weight from 1,940.0 

to 6,185.0 grams (IQR: 511.25), pre-pregnancy BMI from 19.49 to 57.23 (IQR: 8.39), and parity 

from 1 to 9 (IQR: 2) (Table S1). We also evaluated the impact of these personal characteristics on 

prediction accuracy at an individual level. The correlations between RMSE/adjusted R2 and 

continuous characteristics were calculated (Methods). Surprisingly, Fig. 3e shows that the 

continuous characteristics, namely, age (maternal age at birth), birth weight, pre-pregnancy BMI, 

and parity are not significantly correlated with prediction accuracy (Pearson correlation, all 

absolute correlations < 0.5 and all P-values > 0.05, Methods). Importantly, Fig. 3e shows that 

there are three outlier participants for birth weight, BMI, and parity, respectively. For participant 

S1760, the BMI is 57.23 (mean of all: 27.09), which is significantly different from that of most of 

the participants (P-value < 0.001). Notably, our prediction model still achieved high prediction 

accuracy for this participant (RMSE = 1.05, adjusted R2 = 0.93; Fig. 3d). For participant S1762, 

who had a parity of nine (mean of all: 2.92, P-value < 0.001), we also achieved good prediction 

accuracy (RMSE = 2.94, adjusted R2 = 0.90; Fig. 3d). Participant S1562 with birth weight 6,185.0 

grams (mean of all: 3,396.5 grams, P-value < 0.001) was not in the external validation dataset, so 

only her internal validation results are shown (Fig. 3f). As expected, the prediction accuracy for 
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this participant was also good (RMSE = 3.70, adjusted R2 = 0.95). We also tested if categorical 

characteristics, such as ethnicity, affected prediction accuracy. The results show that the prediction 

accuracy appeared to be unaffected by those characteristics. (Fig. S13, ANOVA test, all P-values 

> 0.05). Taken together, these findings demonstrate that the prediction model for gestational age 

based on metabolite biomarkers is very robust and can accommodate diversity at an individual 

level. 
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Figure 3. Deep urine metabolomics can predict gestational age at the individual level. (a) 21 

metabolites were selected as biomarkers. The colors represent the chemical class of metabolites. 

(b-c) Gestational age predicted by 21 metabolites (Y-axis) is highly concordant with clinical values 

determined by the standard of care (first-trimester ultrasound, x-axis) in internal validation (b) and 

external validation dataset (c). (d) The prediction accuracy for each individual participant. (e) The 

continuous characteristics have no effect on gestational age prediction accuracy. (f) The outlier 

participant SF1562 in birth weight also achieves good prediction accuracy in the internal validation 

dataset using the bootstrap method. 

 

Prediction of Time to Delivery 

We next tested whether the urine metabolome could predict time-to-delivery using annotated 

metabolites. “Time-to-delivery” was defined as the difference between the gestational age at 

sample collection and gestational age at delivery, which is a criterion independent of ultrasound-

estimated gestational age. In this test, we first removed the participants who had scheduled 

Cesarean sections from the dataset and then used the remaining 20 participants (14 subjects for 

training and 6 for validation datasets, respectively) for prediction model construction and 

validation (see Methods, Table S1). Finally, 21 metabolites were included, 18 of which 

overlapped with the metabolite markers in the prediction model for gestational age (Fig. 4a and 

b, Table S3). The values predicted by our model agreed with actual values for both training 

(RMSE = 2.58 weeks; adjusted R2 = 0.83; Pearson correlation r = 0.94, P-value < 2.2×10-6) (Fig. 

4c) and validation dataset (RMSE = 2.87; adjusted R2 = 0.77; Pearson correlation r = 0.88, P-value 

= 4.91×10-15) (Fig. 4d), showing accurate time-to-delivery prediction. The permutation test also 

shows that this model does not overfit the data (Fig. S14). Interestingly, we also found that the 
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prediction accuracy was independent of study patient demographics, much like the case of the 

prediction model for gestational age (Fig. 4e, Fig. S15). These results demonstrate that the 

prediction model for sampling time-to-delivery based on metabolite biomarkers is also very robust 

and accounts for diverse characteristics on an individual level. 

 

Figure 4. Deep urine metabolomics can predict time-to-delivery at the individual level. (a) 

The overlap between the metabolites in the prediction model for gestational age and the time-to-

delivery model, respectively. (b) The 21 metabolite biomarkers for RF model for time to delivery 
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model. Colors represent the chemical class of metabolites. (c-d) Using 21 metabolite biomarkers 

to build the prediction model, predicted time-to-delivery (Y-axis) is highly concordant to actual 

values in internal validation (c) and external validation dataset (d). (e) The prediction accuracy for 

each individual participant. 

 

Altered Metabolomic Signatures During Pregnancy 

We also explored the biological function of the 24 metabolite markers that were found to differ 

significantly as pregnancy progressed. First, the Classyfire algorithm was utilized to determine the 

chemical class information of all 24 metabolite biomarkers. Most of the metabolite biomarkers (9 

out of 24, 37.5%, 8 are unknown) are lipids and lipid-like molecules (hormone, Table S3, and Fig. 

S16), which is consistent with our finding above at the metabolic feature level. To capture the 

altered metabolic signatures during pregnancy, the hierarchical clustering and fuzzy c-mean 

clustering algorithms were utilized to group the 24 metabolite markers, which clustered into two 

groups with contrasting regulation patterns during pregnancy progression (Fig. 5 (a-c)). The first 

group was downregulated during pregnancy but increased to normal levels postpartum, including 

a panel of carnitines and signaling compounds such as cAMP (Fig. S17a) whereas the second 

group demonstrated increased abundance as the pregnancy progressed and then fell to normal 

levels postpartum (Fig. S17b). This group comprises diverse hormones and intermediates, such as 

19-hydroxytestosterone, cortisol, pregnenolone, 5α-pregnane-3,20-dione, etc. These hormones 

were highly enriched in the glucocorticoid and mineralocorticoid biosynthesis, growth hormones, 

and lipid metabolism and signaling pathways. Some metabolic markers, progesterone for instance, 

have been applied in clinical tests for therapeutic treatment of preterm birth and pregnancy loss 

(41-44). These data suggest that other members of the steroid group with similar regulation 
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behavior as progesterone could also serve as potential candidates for diagnostic monitoring or 

therapeutic targeting during pregnancy. Correlation analysis of the metabolome at different GA 

periods showed overarching significant alterations as the pregnancy progressed (Fig. 5d). The 

early stages of pregnancy showed a positive correlation between the metabolite intensity and GA, 

while the late stage showed a negative correlation. Their relative distances to postpartum levels 

also showed a similar pattern. This suggested significant alteration of urine metabolome is 

common in the later stages of pregnancy with the potential to precisely predict delivery time. The 

correlation between different metabolic markers demonstrated positive correlations between most 

markers and some potential delivery-related factors including maternal BMI and birth weight, 

indicating co-regulation of most metabolic pathways, except for the negative correlation between 

BMI and pregnenolone (Fig. 5e). Several studies have suggested a higher risk of preterm birth 

among obese women (49-51). Thus, the examination of pregnenolone levels could aid in GA 

prediction and preterm birth risk. BMI is negatively correlated with most lipid metabolite 

biomarkers (Fig. S18), although only BMI-Pregneolone demonstrated significant correlation here 

(FDR adjusted P-value < 0.05, FDR). In fact, BMI was shown to exhibit negative correlations with 

other lipids, except 19-Hydroxytestosterone, but none of these trends were statistically significant 

(FDR adjusted P-value > 0.05, Fig. S18).  
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Figure 5. Integrative analysis of metabolic markers of gestational ages. (a) The clustering of 

identified metabolites markers for gestational age prediction models. Based on different stages of 

gestational age (Y-axis, showing gestational weeks), markers were clustered into two main groups, 

one was upregulated in early stages and downregulated in late stages, while the other group showed 

a contrast pattern, with an upregulation in late stages. (b-c) The fuzzy-c mean clustering of 

metabolite biomarkers based on gestational weeks. The identified metabolite markers could be 

clustered into two groups, one with a consistent downregulation as pregnancy progresses followed 

by a return to normal levels postpartum. (b) the other group showed an upregulation during 
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pregnancy then was downregulated postpartum (c). (d) The correlation of metabolome alternations 

at different gestational weeks and their relative distance to postpartum. The early stage of 

pregnancy showed a positive correlation with postpartum, while the late stage showed a negative 

correlation with postpartum, confirming significant alternations of the urine metabolome in the 

later stages of pregnancy (e) The correlation between different metabolic markers. Sizes of nodes 

showed the total identification score. Colors of nodes demonstrated different classes of 

metabolites. Colors and widths of the cords showed correlation and adjusted p-values. We also 

included BMI and birth weight into the correlation analysis and found a negative correlation 

between BMI and pregnenolone.  

 

DISCUSSION 

 

A reliable estimate of gestational age is critical for the provision of preventive prenatal health care 

and appropriate interventions as the medical needs of the mother and fetus change throughout 

pregnancy 21 - 52. Although substantial work has been done to elucidate the dynamic metabolic 

pathways of pregnancy progression using collected blood samples (18, 19, 21, 53), the dynamic 

pregnancy urine metabolome has been only sparsely characterized. For this study, we applied an 

unbiased comprehensive metabolic profiling approach to analyze urine samples from pregnant 

women who were participants in the SMART-D cohort to better understand prenatal and post-natal 

metabolic dynamics in maternal urine. We developed models to estimate gestational age at the 

time of sampling and predictions for time-to-delivery from sampling. Metabolic models for 

gestational age at time-to-delivery were validated at the cohort and individual levels and found to 

be highly predictive (training database: adjusted R2 0.81, RMSE 2.89; test database: R2 0.77, 
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RMSE 2.97) (Fig. 3c, 3d). Importantly, prediction was found to improve with increased sampling 

frequency. Our gestational age model tended to overestimate gestational age during early 

pregnancy and underestimate gestational age in later pregnancy. These discrepancies may be due 

to underlying heterogeneous biological processes happening throughout pregnancy and will need 

further investigation in a larger population. Overall, our findings suggest that the pregnancy urine 

metabolome can be successfully leveraged to estimate gestational age at sampling and to predict 

time-to-delivery. 

 

Pregnenolone, progesterone and corticoid were all upregulated in the glucocorticoid pathways 

during pregnancy and related metabolites, used in the time-to-delivery prediction model, were 

enriched for glucocorticoid and CMP-N-acetylneuraminate biosynthesis pathways. These 

hormones have been reported to play key roles in pregnancy regulation (42-44). For instance, 

progesterone has been approved for the treatment of amenorrhea, metrorrhagia, and infertility (45-

48). In our previous study of maternal plasma collected in an independent cohort, we also identified 

tetrahydrodeoxycorticosterone (THDOC), estriol glucuronide, and progesterone as potential 

markers for GA estimation (21). These markers were further validated by our findings in maternal 

urine. Other identified derivatives in the same steroid hormone group of estrogens and 

progesterone derivatives, as well as uncharacterized steroid-like compounds discovered in this 

study, may also play roles in pregnancy although their functions remain unclear. Furthermore, N-

acetylmannosamine and N-acetylneuroaminate were both significantly upregulated in the CMP-

N-acetylneuraminate biosynthesis pathway, although the impact of these signaling molecules on 

pregnancy-related processes remains to be explored.  
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As a proof-of-principle, our results show that urine metabolomic profiles can be used to track 

gestation throughout pregnancy. By applying a random forest model, we successfully predicted 

gestational age based on a panel of urine metabolites (Fig 3c, 3d), including diverse 

glucocorticoids, lipids, gluconoids, and amino acid derivatives, indicating comprehensive 

regulation of glucocorticoid biosynthesis and CMP-N-acetylneuraminate biosynthesis by 

pregnancy.  

 

Collectively, the characterized alterations in the maternal urine metabolome demonstrated a strong 

correlation between GA and pregnancy progression. The ability to determine GA accurately and 

conveniently and to predict time-to-delivery will aid in monitoring fetal development and targeting 

interventions to improve maternal and infant health outcomes. This study also revealed substantial 

differences between maternal urine metabolites in healthy pregnancies and those ending in preterm 

birth, which suggests variation of metabolic regulation mechanisms among different pregnancy 

outcomes. Close monitoring of maternal metabolism alterations and their correlation with GA has 

the potential to provide more insight into the programmed regulation of fetal development and the 

development of pregnancy disorders. The non-invasive nature and accessibility of the urine 

metabolome enables improved determination of GA without limitation across various clinical 

settings, including in middle-to-low-income countries where women may have limited access to 

early prenatal care. 

 

 

MATERIALS AND METHODS 

Participant enrolment and urine sample collection 
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Sample collection: 346 urine samples were collected at multiple time points during the pregnancy 

process (11.8–40.7 weeks) and postpartum period for 36 healthy women. The SMART-D cohort 

represents an ethnically diverse group of participants with a wide range age and BMI distribution 

(Table S1, Fig. S1b). The samples were collected longitudinally and delivered to analysis into two 

batches (Table S5). 

 

Gestational age (GA) estimation 

The American Congress of Obstetricians and Gynecologists (ACOG) guidelines were used to 

define accurate gestational age dating for all the participants in the SMART-D cohort. 

 

Chemical material and internal standard preparation 

MS-grade water, methanol and acetonitrile were purchased from Fisher Scientific (Morris Plains, 

NJ, USA). MS-grade acetic acid was purchased from Sigma Aldrich (St. Louis, MO, USA). 

Analytical grade internal standards were purchased from Sigma Aldrich (St. Louis, MO, USA). 

The internal standard mixture of acetyl-d3-carnitine, phenylalanine-3,3-d2, tiapride, trazodone, 

reserpine, phytosphingosine, and chlorpromazine was 1: 50 diluted with 3:1 acetonitrile and water 

for HILIC, and water for RPLC. 

 

Urine sample preparation 

Urine samples were thawed and centrifuged at 17,000 rcf for 10 min. 250 μL supernatant was 

diluted with 750 μL internal standard mixture, vortex for 10 seconds and centrifuged at 17,000 

rpm for 10 min at 4 °C. The supernatant was taken for subsequent LC-MS analysis. A quality 
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control (QC) sample was generated by pooling up all the samples and injected between every 10 

sample injections to monitor the consistency of the retention time and the signal intensity.  

 

LC-MS data acquisition 

Hypersil GOLD HPLC column and guard column was purchased from Thermo Scientific (San 

Jose, CA, USA). Mobile phases for RPLC consisted of 0.06% acetic acid in water (phase A) and 

MeOH containing 0.06% acetic acid (phase B). Metabolites were at a flow rate of 0.25 mL/min, 

leading to a backpressure of 120-160 bar at 99% phase A. A linear 1 - 80% phase B gradient was 

applied over 9 - 10 min. The heating temperature of the column was set to 60 °C and the sample 

injection volume was 5 μL. 

 

MS acquisition was performed on an Q Exactive HF Hybrid Quadrupole-Orbitrap mass 

spectrometer (Thermo Scientific, San Jose, CA, USA) cooperating in both the positive and 

negative ESI mode (acquisition from m/z 500 to 2,000) with a resolution set at 30,000 (at m/z 400). 

The MS2 spectrum of the QC sample was acquired under different fragmentation energy (25 eV 

and 50 eV) of the top 10 parent ions.  

 

Data processing and cleaning 

Raw data processing. First, all the MS raw data (.raw format) were converted to .mzXML (MS1 

raw data) and .mgf format data (QC MS2 data) using ProteoWizard software 

(http://proteowizard.sourceforge.net/). The detailed parameter settings for the data conversion are 

listed in Table S6. Second, all the .mzXML format data was grouped into 3 folders (named as 

“Blank”, “QC '' and ”Subject”) and then subjected for the peak detection and alignment. Third, the 
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peak detection and alignment were performed using our in-house pipeline. Briefly, the peak 

detection and alignment were performed using the centWave algorithm (R package xcms, version 

3.8.1). The key parameters were set as follows: method = “centWave”; ppm = 15; snthr = 10; 

peakwidth = c(5, 30); snthresh = 10, prefilter = c(3, 500); minifrac = 0.5; mzdiff = 0.01; binSize = 

0.025 and bw = 5. Finally, the generated MS1 peak table includes the mass-to-charge ratio (m/z), 

retention time (RT), and peak abundances for all the samples, and other information. This MS1 

peak table is used for the next data cleaning.  

Data cleaning. The data cleanings of the peak table were also performed using our in-house 

pipeline. First, the peaks detected in less than 20 % QC samples were removed from the peak table 

as noisy. Second, the samples with more than 50% missing values were removed as outlier 

samples. Third, the remaining missing values (NA) were imputed using the k-nearest neighbors 

(KNN) algorithm (R package impute). Then, the peak intensity was divided by the mean peak 

intensity for data normalization to remove the unwanted analytical variations occurring intra-

batches. Finally, the ratio of mean values of each peak in two batches was utilized as the correct 

factor to do data integration. The in-house pipeline for data processing and data cleaning, script, 

and parameter setting can be found in GitHub (https://github.com/jaspershen/metflow2). 

 

General statistical analysis and data visualization 

The majority of the statistical analysis and data visualization is performed using Rstudio (version 

1.2.5019) and R language (version 3.6.0) in a Windows 10 X 64 OS. Most of the R packages and 

their dependencies used in this study are maintained in CRAN (https://cran.r-project.org/) or 

Bioconductor (https://bioconductor.org/). The directory used R packages are plyr (version 1.8.5), 

stringr (version 1.4.0), dplyr (version 0.8.3), purrr (version 0.3.3), readr (version 1.3.1), readxl 
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(version 1.3.1), tidyr (1.0.0), tibble (version 2.1.3), ggplot2 (version 3.2.1), ggsci (version 2.9), 

patchwork (version 1.0.0), and igraph (1.2.4.2). All information about the used R packages in 

data analysis are provided in Table S7. The main script for analysis and data visualization in this 

study is provided in GitHub (https://github.com/jaspershen/smartD_project). 

In general, before all the statistical analysis, the data are first log10 transformed and then auto 

scaled as flow:  

Im
' = 

Im - mean( ∑ Im
M
m=1 )

sd(Im=1 to M)
                 (1) 

The categorical data are described as the frequency counts and percentages, and the values of all 

continuous variables are presented as the mean plus or minus the standard deviation (SD) or 

standard error of the mean (SEM). Most metabolic peaks showed right-skewed distribution (Fig. 

S8); thus, the nonparametric methods (Wilcoxon rank-sum test, spearman correlation) are utilized 

for non-parametric statistical tests. All the P-values are adjusted utilizing False Discovery Rate 

(FDR, R base function p.adjust). PCA analysis is performed utilizing the R base function prcomp. 

The R package ggplot2 (version 3.2.21) was used to perform most of the data visualization in this 

study. 

 

SAM test and linear regression model to detect overall altered metabolic peaks during 

pregnancy 

To find the metabolic peaks which significantly changed according to GA during pregnancy, 

significance analysis of microarray (SAM) and linear regression model between GA and metabolic 

peaks were utilized. SAM assigns a score to each metabolic peak on the basis of change in peak 

expression relative to the standard deviation of repeated measurements. For metabolic peaks with 

scores greater than an adjustable threshold, SAM uses permutations of the repeated measurements 
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to estimate the percentage of metabolic peaks identified by chance, the false discovery rate (FDR). 

We performed SAM utilizing the SAM function in R package samr, and resp.type was set as 

“Quantitative” and FDR was set as 0.05 with 1,000 permutation tests. For the linear regression 

model, the R base function lm was utilized. To adjust the potential confounders, the participants’ 

baseline, namely acquisition batch, BMI, mother age, parity, ethnicity were also imputed into the 

linear regression model, and the metabolic peaks with FDR adjusted P-value < 0.05 were selected. 

Finally, only the 3,020 metabolic peaks (2,436 increased metabolic peaks and 584 decreased 

metabolic peaks) that are significant in both two methods were used for subsequent K-means 

consensus-clustering analysis. 

 

K means consensus-clustering 

Unsupervised K means consensus-clustering of the 302 urine metabolome samples was performed 

with the R package CancerSubtypes and ConsensusClusterPlus using the 3,020 metabolic peaks 

that were discovered by SAM and linear regression model. The data was log10-transformed. 

Samples clusters were detected based on K-means clustering, Euclidean distance and 1,000 

resampling repetitions in ExecuteCC function in the range of 2 to 6 clusters. The generated 

empirical cumulative distribution function (CDF) plot initially showed optional separation 2 and 

3 clusters for all urine samples. And from the consensus matrix heatmaps we can also 2, 3 and 4 

clusters seem to have good clustering. To further decide how many clusters (k) should be 

generated, the silhouette information from clustering was extracted using 

silhouette_SimilarityMatrix function. We compared k = 2, 3, 4, and found that when k = 3 we get 

the high stability for clustering (Fig. S4). So finally, all the urine samples were assigned to 3 

clusters (Fig. 1d). 
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PIUMet analysis 

PIUMet is a network-based tool (http://fraenkel.mit.edu/PIUMet/) which infers putative 

metabolites corresponding to features and molecular mechanisms underlying their dysregulation, 

which means that they can transfer metabolic peak information to network information. For each 

GA range, the altered metabolic peaks were outputted as txt format files with three columns: m/z, 

polarity, and -log10 (FDR adjusted P-value) and then uploaded into the PIUMet website. The 

parameters are set as below: number of trees: 10, edge reliability: 2, negative prize degree: 0.0005, 

and number of repeats: 1. Then all the results from PIUMet are processed by an in-house pipeline 

which is provided in our GitHub (https://github.com/jaspershen/smartD_project). Briefly, all the 

annotation results from PIUMet for each GA range were combined, and if one metabolite matches 

more than one metabolic peak, only the metabolic peaks that appeared more than two GA ranges 

were kept, and other metabolic peaks were removed. Then for each metabolite, the matched 

metabolic peaks are used to extract quantitative information and the mean values were used as 

quantitative values for this metabolite.  

 

Correlation network and community analysis 

Due to most metabolic peaks (metabolites) are not normally distributed across all urine samples, 

so the Spearman correlation was used to build the correlation in our analysis. For the annotation 

result from PIUMet and dataset combined by metabolite and clinical variables, the correlations 

between each pair variable were calculated, and then only the absolute correlation > 0.5 and FDR 

adjusted P-value < 0.05 were kept to construct correlation networks.  
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We performed community analysis using the method based on edge betweenness developed by 

Girvan and Newman which is embedded in R package igraph. In a network, the edge betweenness 

score of an edge measures the number of shortest paths through it. So, the idea of edge betweenness 

based community structure detection is that it is likely that edges connecting separate modules 

have high edge betweenness as all the shortest paths from one module to another must traverse 

through them. Briefly, this is an iterative process, in each iteration, the edges with the highest edge 

betweenness score were removed, and the process was repeated until only individual nodes remain. 

Finally, we will get a hierarchical map, a rooted tree, called a dendrogram of the graph. The leaves 

of the tree are the individual nodes, and the root of the tree represents the whole graph (network). 

Then an unbiased method, modularity of the detected community structure was used to analyze 

the correlation network at a cut level. The modularity of community structure corresponds to an 

arrangement of edges that is statistically improbable when compared to an equivalent network with 

edges placed at random. At every iteration of the community analysis, we computed the modularity 

and analyzed the communities at the iteration which maximized this quantity. A visualization of 

community modularity vs. iteration is shown in Figure S7a. To make sure that our findings are 

robust and reliable, only the communities (or clusters) with at least 3 modes were kept for 

subsequent analysis. All the networks were visualized using R package ggraph (version 2.0.0). 

 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis 

The human KEGG pathway database is downloaded from KEGG (https://www.genome.jp/kegg/) 

utilized R package KEGGREST. The original KEGG database has 275 metabolic pathways, and 

then we separated it into metabolic pathways and disease pathways based on the “Class” 

information for each pathway, the pathways with “Human Disease'' class were assigned into the 
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disease pathway database, which contains 74 pathways and remained 201 pathways were assigned 

into metabolic pathway database. The pathway enrichment analysis is used in the Hypergeometric 

distribution test. P-values are adjusted by the FDR method and the cutoff was set as 0.05. The code 

is an in-house pipeline and can be found on GitHub (https://jaspershen.github.io/smartD_project/).  

 

Metabolite annotation 

To achieve accurate metabolite annotation for this study, three criteria, (1) accurate mass (m/z), 

(2) retention time (RT) and (3) MS2 spectral similarities are used for metabolite annotation. The 

public MS2 spectral databases have no retention times for standards, so only the accurate mass and 

MS2 spectral similarity are used. For each matching, we calculate the match score to represent the 

match similarity. Each score gives the standardized range from 0 to 1, meaning from no match (0) 

to a perfect match (1), respectively. Metabolite annotation was first performed using our in-house 

pipeline based on our in-house and downloadable public MS2 spectra databases. Then the 

remaining unannotated metabolic peaks were matched with the online databases NIST 

(https://chemdata.nist.gov/) and METLIN. 

 

For the metabolite annotated using the in-house database, we have accurate mass (m/z), retention 

time (RT) and MS2 spectra, so the annotations are level 1 according to MSI. For metabolites 

annotated using the public databases, only accurate mass and MS2 spectra are used for matching, 

so the annotation is level 2 according to MSI. 

Data organization. All the MS2 spectra (.mgf format) from QC samples were matched with MS1 

peaks in peak table according to accurate mass (m/z, tolerance is set as ±25 ppm) and RT 

(tolerances is set as ±10 seconds) using the code provided by MetDNA [Metabolic reaction 
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network-based recursive metabolite annotation for untargeted metabolomics]56. If one MS1 peak 

matches multiple MS2 spectra, only the most abundant MS2 spectrum is kept. Finally, the generated 

MS1/MS2 pairs were used to match with our in-house and public MS2 spectral databases (HMDB 

[http://www.hmdb.ca/], MoNA [https://mona.fiehnlab.ucdavis.edu/], and MassBank 

[https://massbank.eu/MassBank/]).  

Accurate mass and RT match score. The match tolerance for the MS1 m/z value is set as ± 25 ppm 

and RT match tolerance is set as ±10 seconds. Only the metabolites that meet those tolerances are 

kept. The match scores refer to MS-DIAL and are calculated as follows: 

Accurate mass 

(m/z) or RT match score = exp{-0.5(
experimental value-standard value

δ
 )}                  (2)    

Where the experiment value is the experimental m/z or RT from MS1 peak table, and the standard 

value is the standard m/z or RT from MS2 spectral databases. These equations are based on the 

assumption that for accurate mass and retention time match scores, the differences between 

experimental and standard values follow the Gaussian distribution (normal distribution). The 

standard deviation δ is the accurate mass (m/z) or RT match tolerance. 

MS2 spectral match score. The MS2 spectral match score is a combined value of three scores, 

namely forward dot-product (DPf), reverse dot-product (DPr), and the matched fragments ratio 

(MFR). Both the DP scores and MFR ranges are from 0 to 1, meaning from no match (0) to a 

perfect match (1). The intensities of the fragment ions in the MS2 spectra are rescaled so that the 

highest fragment ion is set to 1. 

The forward and reverse dot-product are calculated as follow: 

Dot product (DP) = 
∑ WSWE

√WS
2WE

2

                                                                                     (3)    
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Where the weighted intensity vector, W = [relative intensity of fragment ion]n[m/z value]m, n = 1, 

m = 0; S = standard and E = experiment. DP from both forward and reverse matches are generated 

using this equation.  

The matched fragment ratio (MRF) is utilized to assess how many fragments are matched in all 

fragments in both experiment and standard MS2 spectra and is calculated as follow: 

Matched fragment ratio = 
WS∩WE

WS∪WE

                                                            (4) 

Where the weighted intensity vectors are the same as the equation (2). Ws∩WE mean the number 

of matched fragments between standard and experiment MS2 spectra, and Ws∪WE mean the 

number of all the fragments in standard and experiment MS2 spectra. 

Finally, the MS2 spectral match score is combined the forward DP (DPf), reverse DP (DPr) and 

matched fragment ratio (MFR), and the weight for forward DP (Wf), reverse DP (Wr), and matched 

fragments ratio (Wm) are set as 0.3, 0.6 and 0.1, respectively. 

MS
2
 spectral match score = Wf × DPf + Wr × DPr + Wm × MFR                (5) 

Total match score. Three match scores, namely accurate mass, retention time, and MS2 spectra 

match scores, are used to calculate the total match score as follow: 

Total match score = Wm/z × Sm/z + WRT × SRT + WMS2 × SMS2                     (6) 

Where Wm/z, WRT, and WMS2 are weighted for accurate mass (Sm/z), RT (SRT), and MS2 (SMS2) 

spectral match scores, and set as 0.25, 0.25, and 0.5, respectively. For public MS2 spectral 

databases without RT information, the above three weights are set as 0.375, 0, and 0.625, 

respectively. 

If one metabolic peak matches multiple metabolites, the annotated metabolites are sorted according 

to the total match score. And for all the potential metabolite markers in our study, we finally 

manually checked to confirm the accuracy of metabolite annotation. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.10.499478doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.10.499478


 

Metabolite biomarker confirmation 

To make sure that the metabolite biomarkers we selected with the right annotations and have good 

reproducibility, we manually checked all the metabolite biomarkers. Two criteria, (1) peak shape, 

and (2) MS2 spectra match are included. Only the metabolite biomarkers with good peak shapes 

remain for prediction model construction. Metabolite biomarkers that have bad peak shapes may 

have bad reproducibility, so they are discarded. The metabolite biomarkers that have bad MS2 

spectra match with standards are also removed to avoid the wrong annotation. 

 

The Random Forest prediction model 

Feature selection. The Boruta algorithm (R package Boruta, version 6.0.0) is utilized to select 

potential biomarkers. Briefly, it duplicates the dataset and shuffles the values in each column. 

These values are called shadow features. Then, it trains a Random Forest classifier on the dataset, 

and checks for each of the real features if they have higher importance. If it does, the algorithm 

will record the feature as important. This process is repeated 100 iterations. In essence, the 

algorithm is trying to validate the importance of the feature by comparing it with randomly shuffled 

copies, which increases the robustness. This is performed by comparing the number of times a 

feature did better with the shadow features using a binomial distribution. Finally, the confirmed 

features are selected as potential biomarkers for Random Forest model construction. 

 

Parameter optimization. All the parameters are used as default settings except ntree (i.e., number 

of trees to grow) and mtry (i.e., number of variables randomly sampled as candidates at each split) 

in the Random Forest model (R package randomForest, version 4.6-14). Those two parameters 
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are optimized on the training dataset. The two parameters are combined together to form a set of 

parameter combinations. The performance of each parameter combination is evaluated using the 

mean squared error (MSE). The parameter combination with the smallest MSE is used to build the 

final prediction model. 

Gestation age (GA) prediction model. All the samples acquired in batch 1 (16 subjects and 125 

samples) are used as the training dataset. All the samples acquired in batch 2 (20 subjects and 156 

samples) are used as the validation samples. First, the training dataset is utilized to get the potential 

biomarkers using the feature selection method described above. Then a Random Forest prediction 

model is built based on the training dataset. Then based on this prediction model, we also construct 

a linear regression model between predicted GA and actual GA (Fig. S19). Then the predicted GA 

from Random Forest is corrected by this linear regression model. So, the GA prediction model 

contains two models, namely Random Forest and linear regression model. Then the external 

validation model is utilized to demonstrate its prediction accuracy. The predicted GA and actual 

GA for the validation dataset are plotted to observe the prediction accuracy. Then the RMSE (root 

mean squared error) and adjusted R2 are used to quantify the prediction accuracy.  

 

For internal validation, the bootstrap sampling method is utilized. Briefly, we randomly sampled 

the same number of samples from the training dataset with replacement (about 63% of the unique 

samples on average) and then used it as an internal training dataset to build the Random Forest 

prediction model using the same selected features and optimized parameters. The remaining about 

37% of the samples on average were used as internal validation data. Those steps repeat 1,000 

times. Finally, for each sample, we got more than one predicted GA value. The mean value of 
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multiple predicted GA values is used as the final average predicted GA and used to calculate MSE 

and adjusted R2.  

 

Sampling time to the delivery prediction model. Sampling time to delivery (week) is defined as the 

time difference between the delivery date and sample collection date. So, for each sample, time to 

delivery is calculated. Then we used those as responses to build a prediction model. All the steps 

are the same as the GA prediction model. 

 

Permutation test 

The permutation test was utilized to calculate p-values to judge if the random forest prediction 

models that we constructed are not overfitting. First, all the responses (GA or time to delivery in 

this study) are randomly shuffled for both training and validation datasets, respectively. Then the 

potential biomarkers are selected and the parameters of random forest are optimized in the training 

dataset using the method described above. Thirdly, the random forest prediction model is built 

using the selected features and optimized parameters in the training dataset. Finally, we use this 

random forest prediction model to get the predicted responses for the validation dataset. Then we 

get the null RMSE and adjusted R2. We repeat this process 1,000 times, so we get 1,000 null RMSE 

and 1,000 null adjusted R2 vectors. Using maximum likelihood estimation, these null RMSE values 

and adjusted R2 values are modeled as Gamma distribution, and then the cumulative distribution 

function (CDF) is calculated. Finally, the P-values for the real RMSE and adjusted R2 are 

calculated from the null distributions, respectively.  

 

Fuzzy c-means clustering 
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The fuzzy c-means clustering algorithm (R packages e0171 and Mfuzz) is utilized to cluster the 

metabolite biomarkers into different classes and explore the metabolite changes according to the 

gestation age (weeks). Because the participants’ samples were collected at different time points, 

so all the samples are grouped to different time ranges. The time ranges are from 11 weeks to 41 

weeks and step is two, and the postpartum samples are grouped to the “PP” group. For the samples 

in the same time range group, each metabolite’s intensity is calculated by the mean value of all the 

samples in this group. So finally, we get a new data frame with 16 new observations. First, we 

optimized the parameter “m” (the degree of fuzzification) based on a method using the Mfuzz 

package. The optimal cluster number is determined based on the within-cluster sum of squared 

error. Then we used all default parameters to build the fuzzy c-means clustering. For each cluster, 

only the features with a membership score > 0.5 were considered, we chose this high stringency 

so that we can explore the dynamics of the core members of each cluster. In fuzzy c-means 

clustering, the membership score is the probability of a feature belonging to any cluster, each 

feature is assigned a cluster based on its top membership score (as opposed to k-means clustering, 

where the membership score is binary). The color of each feature is directly based on the 

membership score (from blue to red, membership score from low to high). The output results were 

not smoothed. 
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Longitudinal Urine Metabolic Profiling and Gestational Age Prediction in Pregnancy 

 

Table S1. The detailed information for all the participants in SMART-D study. 

Table S2. 28 potential metabolic peak markers to predict gestational age. 

 

Table S3. The detailed information of 24 metabolite biomarkers to predict gestational age and 

sampling time to delivery. 

 

Table S4. Prediction result for each participant in prediction gestational age model. 

 

Table S5. The detailed information for each urine sample in SMART-D study.  

 

Table S6. Parameters for MS raw data conversion using ProteoWizard. 

Parameter Setting 

Output format mzXML 

Binary encoding precision 64-bit 

Write index Check 

Use zlib compression Check 

TPP compatibility Check 

Package in gzip Uncheck 

Filter Peak Picking 

 

Table S7. All software and R packages used in data analysis. 

Tools Source Source Version 

R R Core Team https://www.r-project.org/ 3.6.0 
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RStudio RStudio, PBC https://rstudio.com/ 1.2.5019 

plyr CRAN https://cran.r-project.org/web/packages/plyr/ 1.8.5 

stringr CRAN https://cran.r-project.org/web/packages/stringr/ 1.4.0 

dplyr CRAN https://cran.r-project.org/web/packages/dplyr/ 0.8.3 

purrr CRAN https://cran.r-project.org/web/packages/purrr/ 0.3.3 

readr CRAN https://cran.r-project.org/web/packages/readr/ 1.3.1 

readxl CRAN https://cran.r-project.org/web/packages/readxl/ 1.3.1 

tidyr CRAN https://cran.r-project.org/web/packages/tidyr/ 1.0.0 

tibble CRAN https://cran.r-project.org/web/packages/tibble/ 2.1.3 

ggplot2 CRAN https://cran.r-project.org/web/packages/ggplot2/ 3.2.1 

ggsci CRAN https://cran.r-project.org/web/packages/ggsci/ 2.9 

patchwork CRAN https://cran.r-project.org/web/packages/patchwork/ 1.0.0 

igraph CRAN https://cran.r-project.org/web/packages/igraph/ 1.2.4.2 

Boruta CRAN https://cran.r-project.org/web/packages/Boruta/ 7.0.0 

randomForest CRAN https://cran.r-project.org/web/packages/randomForest/ 4.6-14 

e0171 CRAN https://cran.r-project.org/web/packages/e1071/ 1.7-3 

Mfuzz Bioconductor https://bioconductor.org/packages/devel/bioc/html/Mfuzz.html 3.12 

ggraph CRAN https://cran.r-project.org/web/packages/ggraph/ 2.0.3 

ggplotify CRAN https://cran.r-project.org/web/packages/ggplotify/index.html 0.0.5 

xcms Bioconductor https://www.bioconductor.org/packages/release/bioc/html/xcms.html 3.10.1 

impute Bioconductor https://bioconductor.org/packages/release/bioc/html/impute.html 1.62.0 
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Figure S1. Study design of SMART-D study. (a) The metabolome and clinical information of 

36 participants in SMART-D study. (b) Sample collection, data acquisition, data processing and 

analysis design for our study.  

UCSF (University of California, San Francisco), ZSFGH (Zuckerberg San Francisco General 

Hospital). 
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Figure S2. Data quality of urine metabolomics data. (a) Positive and negative mode data. (b) 

Only positive mode data. (c) Only negative data. 
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Figure S3. PCA score plot for each participant in SMART-D study. 
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Figure S4. K means consensus-clustering for urine metabolome in 302 samples. The heatmaps 

of consensus matrix for k = 2 (a), k = 3 (b) and k = 4 (c) clusters based on 1,000 resampled datasets. 

The silhouette plots for k = 2 (d), k = 3 (e) and k = 4 (f) clusters.  

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 10, 2022. ; https://doi.org/10.1101/2022.07.10.499478doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.10.499478


 

Figure S5. Altered metabolic peaks in different GA ranges and their consistency. (a) The 

upregulated metabolic peaks in different GA ranges and their overlap shown by upset plot. (b) The 

downregulated metabolic peaks in different GA ranges and their overlap shown by the upset plot. 

(c) The upregulated metabolic peaks in different GA ranges and their overlap with next GA ranges. 

(d) The downregulated metabolic peaks in different GA ranges and their overlap with next GA 
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ranges. (e) All altered metabolic peaks in different GA ranges and their overlap with next GA 

ranges. 
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Figure S6. Community analysis for correlation network from PIUMet. (a) The maximum 

modularity observed in our correlation network community analysis was 0.302 at iteration 141 of 

community pruning. There were 150 total iterations of community analysis. (b) Heatmap to show 

the changes of 6 clusters during pregnancy at cluster level. (c) Heatmap to show the changes of 6 

clusters during pregnancy at metabolite (metabolic peak) level. (d) Correlation network of cluster 

3. (e) Bar plot to show the frequency of pathways of all metabolites in cluster 3 belong to. 

 

 

 

 

 

Figure S7. Urine metabolome can be used to predict gestational age. (a) 28 metabolic peaks 

were selected as potential biomarkers based on the Boruta algorithm for Random Forest prediction 

model. (b-c) Using 28 metabolic peak biomarkers to build prediction model, gestational age 

predicted by 28 metabolic peaks (Y-axis) is highly concordant to clinical values determined by the 

standard of care (first-trimester ultrasound, x-axis) in internal validation (b) and external validation 

dataset (c). 
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Figure S8. The peak shapes of 24 metabolite biomarkers in GA and sampling time to delivery 

models. 
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Figure S9. The MS2 spectra match of 24 metabolite biomarkers in gestational age and 

sampling time to delivery models. 
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Figure S10. Importance ratio of different chemical class in prediction model for gestation 

age. 
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Figure S11. Permutation test for prediction module for gestational age. (a) Null distribution of 

RMSE values. (b) Null distribution of adjusted R2 values.  

 

 

Figure S12. Gestational age prediction result for each participant. (a) Distribution of RMSE 

and adjusted R2 for each participant in the validation dataset. (b) RMSE and adjusted R2 for each 

participant in the validation dataset. 
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Figure S13. Prediction accuracy with characteristics in GA model. (a) RMSE in different 

ethnicities are not significant. (b) Adjusted R2 in different ethnicities are not significant. 

 

Figure S14. Permutation test for prediction module for sampling time to delivery. (a) Null 

distribution of RMSE values. (b) Null distribution of adjusted R2 values.  
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Figure S15. The continuous characteristics have no effect on sampling to delivery prediction 

accuracy. 

 

 

 

Figure S16. Chemical class of 24 metabolite biomarkers in GA and sampling time to delivery 

models. 
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Figure S17. The trends of 24 metabolite markers during pregnancy. (a) Five metabolite 

markers decrease during pregnancy and increase after childbirth. (b) Nineteen metabolite markers 

increase during pregnancy and decrease after childbirth. 
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Figure S18. Correlation network between BMI and metabolites markers. 

 

 

Figure S19. Prediction error using Random Forest to predict gestational age. 
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Figure 1. Overview of urine collected as part of the Smart-D study. (a) The sampling time points for individual 

participants. Each row represents an individual participant. The histogram and bar on the top and the right show the 

number of samples collected at each gestational age range (bin width = 0.5 weeks) and from each individual 

participant, respectively. Orange dots represent samples taken during pregnancy, blue dots represent samples taken 

after childbirth, and black triangles represent childbirth. (b) Principal Component Analysis (PCA) distributed 

individual urine samples according to gestational age (based on metabolic peaks with QC RSD < 30%). The two 

PCs explaining the largest part of the variation are shown. (c) The volcano plot shows the altered metabolic peaks 

during pregnancy, using the linear regression model (FDR adjusted P-value < 0.05) and SAM test (FDR adjusted P-
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value < 0.05). Red dots represent metabolic features that increased during pregnancy and blue dots represent 

features that decreased during pregnancy. 
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Figure 2. The dynamic changes of the urine metabolome during pregnancy. (a) Subject and sample numbers in 

each GA range. (b) The altered metabolic peaks in each GA range compared to baseline (10-16 weeks). The number 

of decreased and increased metabolic peaks are shown (decreases in green, increases in red). (c) The correlation 

network utilized the annotated metabolic peaks from PIUMet. Each color represents clusters identified using 

community analysis. (d) Cluster 2 which is identified utilized community analysis and changes are consistent in the 

cluster and at metabolite level (Fig. S6). The frequency of pathways of each metabolite is shown on the right panel. 

(e) The change of cluster 2 during pregnancy. The dots represent the mean values of cluster 2 in different GA ranges 

and the bars represent the standard error of the mean (SEM). (f) Altered pathways during pregnancy in each GA range. 

(g) This heatmap shows the changes of 6 metabolic pathways in metabolite (metabolic peak) level. (h) Ridgeline plot 

shows the changes of 6 metabolic pathways in pathway level. 
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Figure 3. Deep urine metabolomics can predict gestational age at the individual level. (a) 21 metabolites were 

selected as biomarkers. The colors represent the chemical class of metabolites. (b-c) Gestational age predicted by 21 

metabolites (Y-axis) is highly concordant with clinical values determined by the standard of care (first-trimester 

ultrasound, x-axis) in internal validation (b) and external validation dataset (c). (d) The prediction accuracy for each 

individual participant. (e) The continuous characteristics have no effect on gestational age prediction accuracy. (f) The 

outlier participant SF1562 in birth weight also achieves good prediction accuracy in the internal validation dataset 

using the bootstrap method. 
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Figure 4. Deep urine metabolomics can predict time-to-delivery at the individual level. (a) The overlap between 

the metabolites in the prediction model for gestational age and the time-to-delivery model, respectively. (b) The 21 

metabolite biomarkers for RF model for time to delivery model. Colors represent the chemical class of metabolites. 

(c-d) Using 21 metabolite biomarkers to build the prediction model, predicted time-to-delivery (Y-axis) is highly 

concordant to actual values in internal validation (c) and external validation dataset (d). (e) The prediction accuracy 

for each individual participant. 
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Figure 5. Integrative analysis of metabolic markers of gestational ages. (a) The clustering of identified metabolites 

markers for gestational age prediction models. Based on different stages of gestational age (Y-axis, showing 

gestational weeks), markers were clustered into two main groups, one was upregulated in early stages and 

downregulated in late stages, while the other group showed a contrast pattern, with an upregulation in late stages. (b-

c) The fuzzy-c mean clustering of metabolite biomarkers based on gestational weeks. The identified metabolite 

markers could be clustered into two groups, one with a consistent downregulation as pregnancy progresses followed 

by a return to normal levels postpartum. (b) the other group showed an upregulation during pregnancy then was 

downregulated postpartum (c). (d) The correlation of metabolome alternations at different gestational weeks and their 

relative distance to postpartum. The early stage of pregnancy showed a positive correlation with postpartum, while 
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the late stage showed a negative correlation with postpartum, confirming significant alternations of the urine 

metabolome in the later stages of pregnancy (e) The correlation between different metabolic markers. Sizes of nodes 

showed the total identification score. Colors of nodes demonstrated different classes of metabolites. Colors and widths 

of the cords showed correlation and adjusted p-values. We also included BMI and birth weight into the correlation 

analysis and found a negative correlation between BMI and pregnenolone.  
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