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SUMMARY

To understand the dynamic interplay between the human microbiome and host during health and disease, we
analyzed the microbial composition, temporal dynamics, and associations with host multi-omics, immune,
and clinical markers of microbiomes from four body sites in 86 participants over 6 years. We found that micro-
biome stability and individuality are body-site specific and heavily influenced by the host. The stool and oral
microbiome are more stable than the skin and nasal microbiomes, possibly due to their interaction with the
host and environment. We identify individual-specific and commonly shared bacterial taxa, with individual-
ized taxa showing greater stability. Interestingly, microbiome dynamics correlate across body sites, suggest-
ing systemic dynamics influenced by host-microbial-environment interactions. Notably, insulin-resistant in-
dividuals show altered microbial stability and associations among microbiome, molecular markers, and
clinical features, suggesting their disrupted interaction in metabolic disease. Our study offers comprehensive
views of multi-site microbial dynamics and their relationship with host health and disease.

INTRODUCTION

The human microbiome comprises highly dynamic microbial
communities inhabiting various body sites,' engaging in
intricate host-microbial interactions that display territory-specific
complexity.>'® Advancements in multi-omics technologies have

catalyzed the elucidation of the molecular mechanisms underlying
microbial ecology and their interactions with host, unveiling the
critical roles of the microbiome in normal physiological processes
such as aging''™"® as well as diseases including inflammatory
bowel disease (IBD),'*® cardiovascular disease,’” ' and type
2 diabetes mellitus (T2DM).?%22
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The etiology and pathogenesis of insulin resistance and T2DM
have been closely linked to the human microbiome.?* 2’ Patients
with impaired insulin and glucose homeostasis exhibit shifted
microbiome composition in the gut,?’+?3?°72° skin,*°~*3 and other
body sites,**~*° reflecting an ecological dysbiosis characterized
by altered microbial alpha diversity,”>*' decreased composi-
tional stability,">*® and greater inter-individual variability.>®
Compromised mucosal and skin barrier integrity, often associ-
ated with insulin resistance, may potentiate microbial transloca-
tion, thereby exacerbating systemic inflammation.**~*’ Although
human microbiome studies are often, by necessity, observa-
tional, a causal relationship between microbiome dysbiosis
and impaired glucose/insulin homeostasis has been demon-
strated through human microbiome manipulation.*'&4°

While prior studies on the microbiome and glucose homeosta-
sis have been informative, they exhibit certain limitations. First,
these studies®'°*®' often lack dense longitudinal sampling,
essential for capturing stability features, thus limiting funda-
mental insights into host-microbe interactions.®*>* Second,
they primarily focus on the microbiome from a single host
site,*°%°°=°8 overlooking the importance of simultaneous multi-
region sampling for assessing microbiome site-specific dy-
namics, and their interplay across various host microenviron-
ments.®°°~%? Lastly, most studies® %266 do not concurrently
measure host clinical and molecular phenotypes, impeding the
exploration of the molecular relationships underpinning health
and disease-related host-microbiome interactions.®”-

Collaborative initiatives like the Integrative Human Micro-
biome Project (iIHMP) and Integrative Personal Omics Profiling
(iPOP) offer avenues to surmount previous studies’ limitations
by investigating well-characterized human longitudinal co-
horts.®>~"" In this study, we examined the relationships between
multi-site microbiomes and host health in the context of predia-
betes, through characterizing the microbiome collected from
four body sites in 86 adults for over 6 years and examining their
associations with host omics and clinical characteristics. We
describe unique longitudinal trajectories for microbiomes across
different body sites, demonstrating their responsiveness to both
host-specific and environmental factors. We found that person-
alized microbiomes exhibit greater stability than communal mi-
crobes, highlighting the resilience of the individualized micro-
biome. Nonetheless, these systems remain vulnerable to
disturbances like viral infections, which may precipitate dysbio-
sis linked to metabolic dysfunctions. Furthermore, our analysis
revealed associations between site-specific microbiomes and
clinical parameters such as cytokine profiles and insulin sensi-
tivity, highlighting the intertwined nature of immune activity and
metabolic well-being.

RESULTS

Description of the study design

We analyzed stool, skin, oral, and nasal microbiome from a hu-
man cohort of 86 participants for up to 6 years (1,126.6 +
455.8 days) (Figure 1A; see STAR Methods). The cohort
comprised 41 males and 45 females, aged between 29 and 75
years old (55 + 9.8 years old), with BMIs ranging from 19.1 to
40.8 kg/m? (28.31 + 4.44 kg/m?) (Table S1A). Sampling occurred
quarterly, with an additional 3-7 samples collected within
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5 weeks (12% of the total) during periods of stress, such as res-
piratory iliness, vaccination, or antibiotic use. The 16S ribosomal
RNA gene sequencing method employed in this study targeted a
variable region to facilitate the detection of amplicon sequence
variants (ASVS),72 enabling the identification and differentiation
of most bacterial taxa at the genus and species levels.”*"*

A unique feature of this cohort is the multi-omics phenotyping
of participants at each time point (Figure 1B). Untargeted prote-
omics (302 proteins), untargeted metabolomics (724 annotated
metabolic features), targeted lipidomics (846 annotated lipids),
and 62 targeted cytokine and growth factor measurements
were performed, along with 51 clinical markers, including
C-reactive protein (CRP), fasting glucose (FG), hemoglobin
A1C (HbA1C), low-density lipoprotein (LDL), and high-density
lipoprotein (HDL) from plasma samples (Figure 1A). Glucose
control assessments, comprising an annual oral glucose toler-
ance test for all participants and a gold-standard steady-state
plasma glucose (SSPG) measurement’ for 58 individuals, clas-
sified 28 individuals as insulin sensitive (IS) and 30 as insulin
resistant (IR) (Figure 1C). Overall, we analyzed a total of 3,058
visits, 5,432 biological samples (1,467 plasma samples, 926
stool samples, 1,116 skin samples, 1,001 oral samples, and
922 nasal samples) generating a total of 118,124,374 measure-
ments. The microbial and other data can be found on our data
portal: https://portal.nmpdacc.org/.

Microbial demographics and personalization across
body sites: Unraveling the impact of diet and
environment

We initially examined the overall demographics of the micro-
biome at each of the four body sites (Figures 1D and S1A). Ex-
tending previous studies,”"°>"°""® we observed a separation be-
tween body sites, including a clear boundary of the skin and
nasal samples, highlighting the pronounced territory specificity
of each microbiome.®"-"*

Micro-biotypes, like enterotypes in the stool micro-
biome,”*"":"® are present in all body sites, with their community
structure predominantly influenced by specific taxa. The stool
microbiome primarily exhibited a gradient of abundance distri-
butions between Bacteroidetes and Firmicutes, except for a
few samples with high Prevotella. The recently identified core
genus Phocaeicola®® had minimal impact on the overall Bacter-
oidetes/Firmicutes gradient, but samples with high Phocaeicola
and Bacteroides were clearly separated (Figure S1A). The oral
microbiome was primarily composed of Prevotella, Strepto-
coccus, Veillonella, Haemophilus, Neisseria, and Leptotrichia,
as previously described.?’®® The skin and nasal microbiome
samples jointly displayed a triangular distribution, primarily
driven by three dominant genera: Cutibacterium, Corynebacte-
rium, and Staphylococcus (Figures 1D and S1A).*#%%7° The dis-
tribution of microbial genera remained consistent with findings
from other cohorts,®°%%* irrespective of participant diversity in
insulin sensitivity in our study (Figure S1B). Our study, however,
extends these observations by longitudinally comparing inter-
and intra-individual covariance across all four body sites within
the same cohort.

Intraclass (intra-individual) correlation coefficient (ICC) anal-
ysis confirmed that microbial personalization is more pro-
nounced at the ASV level than at broader taxonomic resolutions
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Figure 1. Longitudinal profiles of the microbiome at four body sites
A) Study design.

B) Overlap of sample numbers among different omics types.

C) Proportion of stress, insulin resistant, and healthy samples.

E) Density distribution of microbiome richness and evenness.

(
(
(
(D) Uniform manifold approximation and projection (UMAP) of microbiome samples by body site.
(
(

F) Rank prevalence curve of microbiome genera with the 100 highest longitudinal prevalence at each body site.

(Figure S1C), highlighting stronger individualization with finer
taxonomy resolution. Notably, despite similar ecological charac-
teristics and dominant bacterial constituents, the nasal micro-
biome manifested greater personalization than the skin micro-
biome (Figure S1D), presumably because nasal microbiome
dynamics are more host dependent.”®

While environmental factors like season and diet can influence
the human microbiome, our results suggest that the impact of
seasonality on the gut microbiome, despite mixed results in pre-
vious studies,**®°?7 is relatively modest. Likely due to its direct
external exposure, the skin microbiome exhibited the largest
seasonal dynamic. This was followed by the oral microbiome,
which may be shaped by seasonal dietary changes,®’%%%° as it
explained more dietary variance than other sites (Figure S1E).
We also observed a significant fluctuation of the skin and oral mi-
crobiome evenness: these two communities both become more
even during summer with an increased number of different mi-
crobes (Figure S1F) possibly triggered by environmental
changes such as temperature and humidity.®>°° Based on two
participants with accessible environmental and chemical expo-
sure data,”® we found stronger exposome-skin microbiome
covariance than in other body sites (Figure S1G) with noticeable
environmental impacts on internal sites like oral and stool micro-

biomes,®' supporting our earlier single-individual observation.®”
By modeling®® the microbial dynamics across seasons, we found
more pronounced alterations in skin and nasal microbiomes than
in stool and oral microbiomes (Table S1B). These findings not
only extend our knowledge of gut microbiome specificity and in-
dividuality®®°® to other body sites but also broaden our under-
standing of environmental influences on microbiomes, with diet
shaping oral microbiomes and environmental exposure impact-
ing skin and nasal microbiomes.

Microbiome from distinct body sites are ecologically
unique and altered in insulin resistance

Beyond the influence of personal and environmental factors, we
observed distinct ecological attributes among the microbiome at
the four body sites (Figure 1E). The stool microbiome exhibited
the greatest richness and evenness, underscoring its essential
complexity and functional significance. In contrast, the skin mi-
crobiome displayed a more skewed population due to its lower
evenness compared with the nasal microbiome, despite their
similar richness distributions. These ecological features, which
often shift with disease progression, aligned with previous
findings of IR-related gut dysbiosis,”>’° characterized by a
significant decrease in stool microbiome’s alpha diversity
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(t=2.8462, p = 0.0067). Furthermore, shifts in the richness-even-
ness scatter plots for all four body sites (Figure S1H) suggested
systemic dysbiosis in IR individuals, highlighted by significantly
higher skin microbiome richness (t = —2.9102, p = 0.0057) (Fig-
ure STH) and evenness (t = —2.4393, p = 0.019) (Figure S1H).
These shifts indicate that IR-associated dysbiosis extends
beyond the gut microbiome.

Importantly, extending longitudinal observations from single
body sites,**°*°® we define a “core microbiome” (see STAR
Methods) as microbes consistently present over time, represent-
ing potentially indispensable®’**® genera at each body sites.
Interestingly, we found that stool and oral microbiomes maintain
more than 25 highly prevalent core genera, whereas nasal and
skin microbiomes only had three (Figure 1F). Importantly, some
core genera have low relative abundance, (i.e., Coprococcus
mean prevalence = 80.75%; mean relative abundance =
0.544%), demonstrating the potential significance of low-abun-
dance strains (Figure S1l). Intriguingly, the richness of core
genera in stool and oral microbiome is negatively associated
with SSPG (Spearman Rho = —0.52, p = 0.00047) and BMI
(Spearman Rho = —0.40, p = 0.005), respectively (Figure S1J),
indicating that IR and obesity may be associated with a loss of
core microbiomes at these sites.

We further explored the microbiome ecology variations be-
tween IR and IS individuals. IR subjects had a significantly higher
number of skin core genera (t = —2.5856, p = 0.014) and a lower
number of stool core genera (t = 2.9659, p = 0.0051) compared
with IS individuals (Figure S1K). Notably, several butyrate-pro-
ducing bacteria (i.e., Coprococcus, Parasutterella, and Butyrici-
coccus) were decreased in IR stool core microbiomes, whereas
diabetes-related opportunistic skin pathogens (i.e., Finegol-
dia®~"°" and Acinetobacter'®7'%%) were enriched in the skin
core microbiome of IR individuals (Table S1C). In addition, we
found a clear divergence of the rank prevalence curves in stool
and skin microbiome (Figure S1L), demonstrating a global micro-
bial prevalence shift in IR individuals at these two sites.

Additionally, several taxa differed significantly between IRand IS
individuals in relative abundance. The stool microbiome of IR indi-
viduals showed an increase of genus Phocaeicola (Linear discrim-
inant analysis Effect Size [LEfSe]: 0.03; Benjamini-Hochberg [BH]
adjusted p = 0.017) and a reduction of the genus unclassified Ru-
minococcaceae (LEfSe: 0.017; BH-adjusted p = 0.0039), whereas
the skin microbiome exhibited a decrease in the genus Cutibacte-
rium (LEfSe: 0.069; BH-adjusted p = 0.007) and an increase of the
genus Peptoniphilus (LEfSe: 0.0076; BH-adjusted p = 0.0022),
which has been previously associated with diabetes-related skin
dysbiosis'%%¢1%7 and necrotizing infections'®® (Figure S1M;
Table S1D). No such differences were observed in oral and nasal
microbiomes. These findings further indicate that skin and stool
microbiome stability is altered in IR individuals. Overall, our results
reveal that IR participants exhibit a stool microbiome with reduced
richness and butyrate-producing bacteria, and a skin microbiome
more susceptible to opportunistic pathogens.

Distinct taxon-specific stability and individuality in
microbiomes across body sites: A potential pathway for
personalized interventions

We next examined microbiome stability at the genus level across
body sites, hypothesizing stability is taxon and site specific. We
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defined a metric “degree of microbial individuality” (DMI, see
STAR Methods) for each genus, which quantifies similarity within
an individual relative to the population; a high DMI means the mi-
crobes taxa is highly individual specific. We also calculated a
“family score” (FS, see STAR Methods) to evaluate microbial
dissimilarity within households. Expanding observations of the
stool microbiome,®*’%1%° skin, oral, and nasal microbiome
also demonstrated significantly less intra-individual and within-
family variation compared with the variation observed between
different individuals (Figure 2A; Table S2A). Intra-individually,
the rate of complete ASV turnover within a genus over time
was highest in the nasal microbiome (35.5% of cases), followed
by skin (24.4%), stool (24.2%), and oral sites (2.7%). This finding
underscores significant intra-individual ecological dynamics at
the sub-genus level within microbiomes, despite overall commu-
nity stability.

The DM, irrespective of relative abundance, was high in the
stool microbiome (Figure 2B), particularly within the Bacteroi-
detes phylum (Figure 2C; Table S2B), possibly due to its pro-
nounced adaptive evolution' """ and substantial colonization
resistance.’'? Furthermore, the stool microbiome had the lowest
FS, whereas oral and nasal microbiomes shared greater similar-
ity within households (Figure S2A), likely due to common living
environments®®'"® or direct microbiome exchanges.''*

Our data revealed substantial DMI variance across body sites,
potentially attributable to inherent niche-specific taxonomic
complexities (Figure 2D; Table S2C). For example, Corynebacte-
rium in nasal and Bacteroides in stool showed the highest DMI,
respectively. These results suggest that specific microbial
taxa, adapting to their respective niches, may exhibit enhanced
individualization. Therefore, the microbial community at each
body site is largely shaped by niche-specific interactions. In
contrast, environmental genera such as Klebsiella''® and Hae-
mophilus''® displayed uniformly low DMI across all examined
body sites, indicating that external environmental factors exerts
arelatively weaker influence on the individuality of the native host
microbiome. Interestingly, after adjusting individuals’ collective
DMI by each genera’s relative abundance, we found a notable in-
crease of individuality in the stool microbiomes of IR individuals
(Figure S2B), likely due to the increased Bacteroidetes among IR
individuals.

Overall, the DMI and FS metrics for each specific genus
offer an overarching perspective on microbial host specificity.
Meanwhile, they provide crucial insights into the taxonomic
composition of the community and potential influences of envi-
ronmental factors on the host’s microbiome. Additionally, the
DMI measurements provide important ecological characteristics
about micro-biotypes, including “enterotype” in stool micro-
biome’®""" or “cutotypes” in skin microbiome.®*

Interplay of microbial individuality and stability: Insights
from longitudinal multi-site microbiome analysis

Prior studies™?%9°118-120 demonstrated that microbiome stabil-
ity is highly personalized. Consequently, we explored the rela-
tionship between microbial individuality and stability across
body sites. We first examined the genus recolonization rate,
measured by ASV consistency when a genus is detectable
after being undetected in one or more consecutive samples.
The overall recolonization rate (measured by 1 — pairwise
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Figure 2. The individuality of the microbiome differs significantly across genera and body sites

(A) Bray-Curtis dissimilarity comparisons within individuals, families, and between unrelated participants.

(B) DMI scores (see STAR Methods).

(C) Average DMl radar plot by body site and phylum, with significant Kruskal-Wallis test results for Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and
other phyla.

(D) DMI cladogram representing stool, skin, oral, and nasal microbiomes.

Significance indicated by asterisks: *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 3. Temporal stability of microbiomes associated with individuality and stress events
(A) Correlations of taxa-recurrence with mean DMI for stool, skin, oral, and nasal samples.
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(E) DMI differences between correlated and non-correlated genera.

(F) Microbiome shifts during health and stress events over 3 months.
Significance indicated by asterisks: *p < 0.05, **p < 0.01, ***p < 0.001.

Jaccard distance'?""'??) was significantly associated with DMI

on all three body sites except for the oral microbiome (Figure 3A),
which intrinsically maintains a high recolonization rate. Such cor-
relations were strongest in the nasal microbiome (Figure 3A),
potentially explaining the high ICC observed above. Surprisingly,
no difference in recolonization rate was found between IR and IS
individuals (Figure S3A). Our results suggest that highly individu-
alized strains are more likely to recolonize, validating a hypothe-
sis raised by fecal transplantation studies'?*'?* and implying its
potential efficacy in treating IR-related dysbiosis.

The longitudinal data also enabled tracking of microbiome sta-
bility over time by quantifying the dissimilarity between-sample
pairs in relation to collection date intervals, which was reported
to be higher in IBD-related gut dysbiosis.'® Our analysis revealed
that the stool microbiome changed more slowly over time, with
the nasal site exhibiting the fastest rate of change (p < 0.001)
(Figure 3B). Additionally, IR individuals showed significantly
lower stability in stool and skin microbiomes than IS individuals,
as evidenced by linear mixed models (stool p: 1.82 x 1078, skin
p: 2.84 x 107'2), corroborating our findings of greater microbial
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abundance disparities in these two body sites between IR and IS
participants (Figure S1M).

Intra- and inter-individual correlations of microbiome
dynamics across body sites: Implications for microbial
interdependence and territory specificity

We next investigated whether microbiome dynamics were intra-
individually co-associated across body sites, both at the com-
munity level and for individual taxa. Hierarchical clustering
demonstrated a strong link in personal microbiome dynamics
between the skin and nasal sites, whereas the dynamics of the
stool microbiome was less correlated with other body sites (Fig-
ure 3C). The inter-site correlation of microbiome stability indi-
cates systemic microbial coordination, potentially regulated by
the common mucosal system.'?>'?® Comparison between IS
and IR individuals revealed that both groups had a strong skin-
nasal link, but a skin-oral correlation was exclusive to IS individ-
uals (Figures S3B and S3C). This implies that IR status under-
mines the stability of the skin or oral microbiome, possibly due
to the compromised host regulation of microbiome stability or
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due to impaired mucosal immunity related to IR,'*” a key factor
for between-body-site microbial interactions, '2°126:128:129

Since the microbiome often operates as interdependent
guilds, *%'%? we questioned which body sites demonstrate the
highest microbial inter-dependency. We found that 18.23% of
all stool genus pairings (5,671) were significantly correlated
within individuals, mostly Firmicutes (Figure 3D). Surprisingly,
co-association was highest in the oral microbiome (50.17 %), fol-
lowed by skin (47.51%) and nasal (38.36%), highlighting strong
synergistic interactions among microbiome members at each
body site (Table S3A).

We further investigated the microbial crosstalk between body
sites by searching for sample-wise microbial collinearity. Mem-
bers from the skin and nasal sites were the most correlated
(15.57% of all possible pairs) (Figure 3D; Table S3A). However,
remarkable territory specificity was still evident among core mi-
crobiomes of each body site (Table S3B). For instance, three pre-
dominant core genera— Corynebacterium, Staphylococcus, and
Cutibacterium—exhibited no longitudinal correlation between
skin and nasal sites. Similarly, oral Prevotella’s abundance did
not correlate with its abundance in the stool microbiome, consis-
tent with our observation of high FS in oral but not stool Prevo-
tella (Table S2C). Although dysbiotic microbiome translocation
between body sites has been reported,'>*~'°° our results sug-
gest these translocation cases likely do not involve the niche-
specific core taxa. Moreover, genera that are more interdepen-
dent exhibit lower DMI compared with less interdependent
genera (Figures 3E and S3D), indicating that highly individualized
microbiomes exhibit greater temporal stability.®>'*® Expanding
on our findings of micro-biotypes across body sites (Figure S1A),
we observed that dominant taxa driving these biotypes exhibit
significant inter-individual correlations. Examples include
significant correlations of Cutibacterium levels in one’s skin
with their Cutibacterium level in nasal (beta = 0.56, BH-adjusted
p = 0.0012), their Bacteroides in stool (beta = 0.52, BH-adjusted
p = 0.0038), and their Leptotrichia in oral microbiomes (beta =
0.43, BH-adjusted p = 0.0088). Conversely, individuals with
high unclassified Ruminococcaceae in stool correlates with low
Veillonella in oral microbiome (beta = —0.35, BH-adjusted p =
0.015) (Table S3C). These findings suggest that the establish-
ment of micro-biotypes are regulated by personalized factors.

Acute events impact microbiome dynamics across body
sites and are influenced by insulin resistance

Three strong perturbation events—infection, vaccination, and
antibiotic usage—are known to cause stool microbiome disrup-
tions.”%7%: 125137 Within a 3-month period, the stool microbiome
of IR individuals exhibited greater temporal shifts between
healthy visits and perturbations than IS individuals (Figure 3F).
This pattern, however, was not consistently discernible across
other body sites, suggesting a site-specific microbiome
response to these events. Unlike IS individuals, IR individuals
displayed reduced stool microbiome evenness and lacked the
perturbation in nasal microbiome during respiratory infection
(Figure S3E), possibly due to higher IR-associated mucosal
inflammation'*®'“° masking or superseding infection-induced
local microbiome changes observed in IS individuals. During
the course of infection, we identified a transient increase in
several genera such as Alistipes in the stool, Peptoniphilus on
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the skin, unclassified Prevotellaceae in the oral cavity, and Ori-
bacterium in the nasal cavity. Conversely, we noticed a decrease
in the presence of Clostridium cluster IV in the stool, unclassified
Clostridia in the oral cavity, and unclassified Neisseriales in the
nasal cavity (Figures S3F-S3H; Table S3D). Although the extent
to which transient microbial shifts contribute to IR-related dys-
biosis is not clear, the notable increase of core microbiomes in
IR skin samples (Figure S1K) may suggest a correlation between
acute perturbations and long-term changes in the core micro-
biome composition. Overall, our findings indicate that dysbiosis
can manifest differently across body sites, potentially through
site-specific mechanisms. For instance, IR-related temporary
disruptions in the stool microbiome seem to be characterized
by a loss of core microbiome species producing short chain fatty
acids. In contrast, in less complex skin and nasal microbiomes,
dysbiosis might involve the acquisition of opportunistic patho-
genic species such as Peptoniphilus.

The interplay between host immune system and
microbiome across body sites: Insights into insulin
resistance and inflammation
The dynamics of microbial stability are likely linked to multiple
host regulatory mechanisms, particularly the immune sys-
tem. 4129141144 sing our customized bayes model,’*® we
examined the longitudinal interplay between 62 host circulating
cytokines/chemokines, growth factors, and microbiome abun-
dance at all four body sites. Based on credible interval, we iden-
tified 477 stool, 226 skin, 318 oral, and 221 nasal significant mi-
crobiome-cytokine associations that are body-site specific
(Figure 4A; Table S4A). The stool and oral microbiome showed
a significantly broader microbiome interaction spectrum than
skin and nasal microbiome (Figure 4A). Interestingly, the cyto-
kines associated with epithelial/endothelial growth and vascular
inflammation (i.e., epidermal growth factor [EGF], Vascular cell
adhesion molecule[VCAM]-1, and interleukin [IL]-22), IL-1 family
members (i.e., IL-1b and IL-1Ra), and leptin demonstrated the
highest number of interactions with the microbiome. We further
identified a subgroup of cytokines including IL-1b, IL-1Ra,
MCP3(Chemokine ligand [CCL] -7), and IL-23 as the strongest
correlative cytokines with the microbiome via effect size (Fig-
ure S4A). The clear pattern of body-site-specific interactions
may contribute to the taxa niche specificity. For example, Morax-
ella shows a negative correlation with 23 cytokines on the skin,
yet only with three in the nasal cavity (Table S4B). This reduced
microbe-immune interaction in the nasal cavity may explain the
higher prevalence of Moraxella in nasal.”'“°

We next examined whether certain phyla are more frequently
interacting with cytokines, potentially influencing their stability
and individuality. Members of the Firmicutes phylum (primarily
Clostridia) were significantly overrepresented among cytokine-
correlated microbes across all body sites (Xsioo” = 19.343,
Pstool = 1.092 % 1075 Xgin? = 10.418, Perin = 0.0012; Xoral® =
30.935, Poral = 2.668 X 1078 Xnasa> = 31.396, Ppasal = 2.104 X
10~8) (Figure 4B). This interaction may account for Firmicutes’
higher FS and lower DMI in the stool microbiome compared
with other phyla. Additionally, an increase of Firmicutes is asso-
ciated with conditions like obesity-related gut dysbiosis,'*” IBD-
related oral dysbiosis, '*® and psoriasis-related skin dysbiosis, ' *°
which share inflammation as a common factor.
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Figure 4. Systematic connections between circulating cytokines and microbiomes
(A) Mixed-effects model outputs for cytokine-microbiome correlations; red lines for positive, blue for negative associations; circle size denotes significant

correlation count.
(B) Cytokine-related genera percentages by phylum.

(C) Density plot of significant cytokine-microbiome correlation coefficients compared by genera prevalence.
(D) Correlation coefficients by body site and phylum. p values for positive versus negative associations were annotated in the middle.
(E) Hierarchical clustering of Spearman coefficients between cytokines and diverse genera.

Significance indicated by asterisks: *p < 0.05, **p < 0.01, **p < 0.001.

Interestingly, cytokines appear to play a pivotal role in shaping
an individual’s core microbiome and in curbing the colonization
of non-commensal bacteria, including many from the Proteobac-
teria phylum. At all four body sites, we found that opportunistic
microbes demonstrated a stronger correlation with cytokines
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than core microbiomes (see STAR Methods) (stool: W = 1,715,
p = 1.181 x 107'% skin: W = 223, p = 0.004041; oral: W =
1,055, p = 7.877 x 1075 nasal: W = 482, p = 0.004691) (Fig-
ure 4C). This correlation is largely driven by Proteobacteria rather
than Firmicutes, as Proteobacteria consistently constitutes a
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larger segment of the opportunistic microbiome compared with
the core microbiome (Figure S4B). Proteobacteria often carry
potent lipopolysaccharides (LPSs) and instigate the downstream
immune cascade.’”®"®* Previous studies'®>'*>"*® have re-
ported an increase in Proteobacteria abundance during inflam-
mation. Contrarily, our study revealed that the correlations be-
tween cytokines and Proteobacteria abundance are mostly
negative, except for Proteobacteria members in the nasal micro-
biome (Figure 4D). The negative correlation of Proteobacteria is
stronger in stool (W = 25,315, p = 0.04439), skin (W = 4,995,
p = 0.005214), and oral sites (W = 9,443, p = 9.649 x 1079
but weaker in nasal sites (W = 5,218, p = 0.2693). Furthermore,
all cytokine correlations (n = 10) from opportunistic stool
Proteobacteria are negative, whereas many high-prevalence
Proteobacteria members exhibit positive correlations with
cytokines (Figure S4C). Our results suggest that inflamma-
tion might contribute to the adaptation of more prevalent
Proteobacteria.'?>1%7

The host response by cytokines and chemokines may be
linked with the observed richness of bacterial genera, in addition
to their relative abundance. We therefore examined the correla-
tion between cytokines and the richness of the 20 most diverse
genera per body site. The richness of several prevalent stool mi-
crobiome genera within the Bacteroidetes phylum, such as Pre-
votella, Phocaeicola, and Parabacteroides, form a cluster (col-
umn 3, Figure 4E) with primarily negative associations, echoing
our finding that the relative abundances of Bacteroidetes mem-
bers are more likely to be negatively correlated with cytokines
(Figure 4D). Also, leptin and Granulocyte-macrophage colony-
stimulating factor (GM-CSF), both strongly associated with
BMI (Figure S4D), show the strongest overall correlation with
richness (row cluster F, Figure 4E). This extends findings from
numerous studies'*”'°%7'%% on obesity’s influence on the gut mi-
crobiome diversity to additional body sites. Furthermore, we
discovered that seven skin genera (column cluster 1, Figure 4E)
positively correlated with a cytokine cluster (row cluster A, Fig-
ure 4E), indicating that the richness of specific skin genera
(e.g., Rothia, Veillonella, and Streptococcus) is positively associ-
ated with the level of plasma cytokines. Consequently, the
observed increase in the skin microbiome richness in IR individ-
uals (Figure S6B) may suggest a diminished host selection of the
skin microbiome during inflammatory periods.

Overall, our analysis elucidates the interplay between chronic
low-grade inflammation and microbial dynamics across various
body sites. It connects the immune system with microbiome
composition and individualization and sheds lights on how these
dynamics are both influenced by and contribute to insulin
resistance.

The microbiome is highly connected with host
molecules: Unraveling the role in insulin resistance and
inflammation

To comprehensively explore the relationship®”'¢"1? pbetween
the microbiome and internal host molecules and its role in IR,
we analyzed the correlations between microbiome genera and
plasma proteins, lipids, and metabolites in the host. We first
modularized the lipidomics data to address its high collinearity
(Figure S5A; Table S5A) and then applied a linear mixed model
to residualize all omics data (see STAR Methods), reducing be-
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tween-individual variation and emphasizing longitudinal intra-in-
dividual relationships.

Interestingly, the microbiome-host molecule interaction
network partitions according to internal molecular composition
rather than body sites of the microbiome (Figure 5A), suggesting
that certain taxa are primarily influenced by internal molecules in-
teractions over influencing host molecular composition. Notably,
three enterotypes driving taxa: Bacteroides, Prevotella, and un-
classified Ruminococcaceae, exhibit a clear preference for the lip-
idome, proteome, and metabolome regions, respectively (Fig-
ure 5A; Table S5B). The close association between Prevotella
and proteins has been previously documented,'®*'®* as well as
the relationship between Bacteroides and lipids.'®>'°® However,
our findings reinforce this understanding to include both additional
taxa and multiple body sites, suggesting that these connections
are not only site and taxa specific but also systemic and robust.

Many taxa-molecule interactions were consistent across
body sites, validating the robustness of these relationships. The
skin microbiome exhibited the broadest connectivity in the
microbe-lipidome association, whereas the stool microbiome
was mainly connected to the metabolome and proteome, as ex-
pected'®”'8 (Figure 5B). Proteome pathway annotation further
supported these connections and their potential functional impli-
cations. The skin microbiome-related proteins were enriched for
pathways regulating lipid transport and metabolism, whereas the
stool, nasal, and oral microbiomes were more strongly connected
to the host immune response, including complement activation
and humoral immune response. The oral microbiome exhibited
significant associations with proteins linked with regulation of
proteolysis, hydrolase activity, and enzyme, peptidase, and
lipase inhibitor activity (Figure S5B). Strikingly, the complexity of
the network between the stool microbiome and host molecular
relationships was significantly reduced in individuals with IR (Fig-
ure S5C), indicating a loss of balance in these individuals.

Our study reveals that several metabolites, such as alcohol-
associated metabolite ethyl glucuronide,'®® interact with micro-
biomes across all four body sites, demonstrating a more global
effects of alcohol beyond the gut and oral microbiome.'”%'72
Notably, skin Neisseria and Klebsiella, recognized for their acet-
aldehyde-""%""* and ethanol-producing’'"*"'"® potential, showed
a positive correlation with plasma ethyl glucuronide level (Fig-
ure 5C). Conversely, Faecalimonas, typically an acetate-produc-
ing bacteria'’”'"® and sensitive to alcohol,’”® exhibited a signif-
icant negative correlation with ethyl glucuronide. Furthermore,
Desulfovibrio, a key genus promoting microbiome-related meta-
bolic syndrome, '®%'8" was positively correlated with ethyl glucu-
ronide. These findings suggest that alcohol metabolism is asso-
ciated with microbial dysbiosis across various body sites.

We also observed notable interactions between microbiome
genera richness, a recognized indicator'®?8% of host metabolic
status, and internal plasma analytics. These interactions were
most pronounced in the stool microbiome, likely due to its high
richness (Figures 5D and S6A; Table S5C). Intriguingly, we
discovered a positive association between p-cresol glucuronide,
a bacteriostatic’® metabolite produced exclusively by the
anaerobic gut microbiome and linked to insulin resistance,””'%°
and the richness of unclassified Ruminococcaceae and Oscilli-
bacter in the stool. Conversely, it was negatively associated
with genera typically considered metabolically beneficial, such

Cell Host & Microbe 32, 1-21, April 10, 2024 9




Please cite this article in press as: Zhou et al., Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dy-
namics during health and disease, Cell Host & Microbe (2024), https://doi.org/10.1016/j.chom.2024.02.012

¢? CellPress

OPEN ACCESS

Cell Host & Microbe

. Snodgrassella
Eggerthia
Aminipila
. N . Hymenobacter
Molecular Microbiome Massilia
* Kingella
» >,
* m Prevotellamassili
Ut * Metabolome Negativie A
s " Pelomonas

Corynebacterium e
= °

.. =
= ':x{'

— \ .
4 L) wGrantlicatella
€T @4 Streplococcus ~ .« ® .
" \ S, A
.: \ O NAL | K 9
R .
© Stool microbiome s A\ R RN 4 7 lancEfieldellas’  ©
L “ Axa Y
@ Skin microbiome A \\ e A i e S i
. 4 mANA @ e " L A
@ Oral microbiome res A A : o4 AA ° \\ i
AR A . a
© Nasal microbiome AN Aqﬁ. 2 S A o
@ Metabolite Sl tes ! A
A Lipidome 4 > °
@ Proteome «

—log(p_adjust, 10)

! Lipidéme

-_—3

—
°

icrococcus
U_Ruminoc
Ros as
Methylorubrum
Brevibacterium
Alkalihalobacillus:
Herbaspirillum
Enhydrobacter

ethyl glucuronide

Klebsiella
Internal Molecular Connections with Dolosigranulum
Microbiome Relative Abundance Leptotrichia

Neisseria

< >
negative correlation positive correlation”

.
. D E Prevotella Richness

Microbiome

p—Cresol glucuronide

Internal Molecular Connections with
Microbiome ASV Richness

< >
negative correlation positive correlation”

Figure 5. Interactions between plasma metabolites, lipids, proteomics, and microbiome over time
(A) Correlation network shows links between microbiome genera relative abundance and plasma analytics, color-coded by type (microbiomes: dark yellow, blue,
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(B) Plasma analytics-microbiome relative abundance correlation summary of (A).

(C) Correlations between genera and the metabolite ethyl glucuronide.
(D) Plasma analytics-microbiome relative richness summary of Figure S6A.
(E) Correlations between genera and the metabolite p-cresol glucuronide.

as Roseburia'®®'®® (Figure 5E). These findings suggest that
p-cresol glucuronide may influence the development of
insulin-resistance-related dysbiosis by altering host tolerance
to certain genera belonging to Clostridia.

In conclusion, our results not only validate several previous
findings but also generate more host-microbial associations,
enhancing our understanding of the complex interplay between
the human microbiome, metabolites, and host health.

Elucidating microbiome-mediated effects on clinical
phenotypes: A comprehensive mediation analysis
across four body sites

We next investigated potential causal linkages between mi-
crobes, host molecules and clinical phenotypes using mediation
analysis.'®'° This method measures the contribution of
mediators, such as plasma omics or cytokines/chemokines, to
the assumed'®" microbiome-clinical phenotype (Table S6A)
connection, providing confidence levels by inverting the roles
of mediator and dependent variable.®5%1°2 Using this assump-
tion, we identified 330 directionally significant mediation effects
involving microbial taxa across all sites, with 207 and 164 of
these mediation effects detected in IS and IR participants,
respectively (Figure 6A, Table S6B). These outcomes suggest
potential microbiome-host causality exists and varies with IR
status, though unaccounted confounders remain possible.
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Compared with IS, we observed a significant decrease in cyto-
kine-mediated effects of stool microbiome on hematologic pa-
rameters (p = 0.002) (Figures 6B, 6C) and metabolome-mediated
effects of stool microbiome on immune phenotypes (p = 0.002) in
IR individuals. Furthermore, there was an absence of lipidome-
mediated associations between skin microbiome and host
plasma lipids/cholesterol in IR participants (p = 0.031), suggesting
a dysregulation in specific microbiome-metabolic interactions
related to hematologic/immune and lipid/cholesterol homeostasis
in IR (Figures 6D, 6E, Table S6C). In contrast, the oral microbiome
mediated a large proportion of immune profiles via the modulation
of lipidome (p = 0.035) and cytokines (p = 0.0001) in IR relative to IS
participants, primarily through a negative relationship among
major oral core microbiomes such as Veillonella (Table SEB).
These causal relationships align with previous findings suggesting
that diabetes-related oral dysbiosis may arise from a combination
of the loss of core commensal oral taxa®**"'%® and an increase
in the pathogenicity of resident oral bacteria during impaired
glucose metabolism, as demonstrated by human observational
studies'®*"°° and animal research.*®*°

DISCUSSION

This study presents a systematic analysis of longitudinal multi-
site microbiome ecology and host dynamics. With date-matched



Please cite this article in press as: Zhou et al., Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dy-
namics during health and disease, Cell Host & Microbe (2024), https://doi.org/10.1016/j.chom.2024.02.012

Cell Host & Microbe

¢? CellPress

OPEN ACCESS

A Phenotype B C

Phe:otype Microbiome Mediator

Microbiome Mediator

[ Lipid/Cholesterol
B Hematologic I]

&

/Q \ \
. Pwedi=0.144 \ D

Estimate= -0.29 TGL

/ \
[~ Pueai=0.152 \ o

Haemophilus Estimate = - 0.14

Haemophilus

=]
IS
/ [ >
/ 4 /
} c I 5 SAIAN
/ /A Puedi= 0.22
| ( s m BE———— @
Akkermansia Estimate = 0.12 A1C Akkermansia  Estimate= 0.19  A1C
o = p=0.0044 p=0.0024
Phenotype
Microbiome  Mediator O D E
. . . =] .
Microbiome Mediator Phenotype D / Y D Lipid module_5_20 Lipid module_5_20
B stool E Proteome B Electrolyte o / I Y
’ WL/
B skin B Metabolome H Hepatic "'* \‘\,""N" [ ]
M oral | Lipidome B Kidney/Hepatic k - “
B Nasal B cytokine W Kidney \ ¥<
O Immune
E Glucose/Insulin |
IR

p=0.002

p <0.001

Figure 6. Causal inference decodes microbiome-driven phenotypic dynamics mediated by internal molecules and cytokines
A) Microbiome and phenotype mediation analysis. Comparisons between IS and IR regarding each mediated effect were performed using a Fisher’s exact t test.

B) Akkermansia’s mediation effect on blood A1C level via plasma IL-15.

D) Haemophilus’s mediation effect on plasma triglycerides level.

(
(
(C) Akkermansia’s mediation effect on blood A1C level in insulin sensitive individuals.
(
(

E) Haemophilus’s mediation effect on plasma triglycerides level in insulin sensitive individuals.

microbiome and host omics, we not only expand our knowledge
of the stability and individuality of microbiome from various body
sites but also provide mechanism-generating hypotheses on
host-microbiome interactions in the context of prediabetes.
We demonstrate a number of interesting observations: (1) there
is a “core” microbiome that is highly stable over time and an
opportunistic microbiome that is highly variable and more potent
to the immune system; these are niche specific. (2) Correlations
between microbiomes across body sites and extensive interac-
tions with host factors indicate systemic coordination and inter-
actions across the human body. (3) Highly individualized micro-
biomes are associated with distinct environmental factors (i.e.,
season, diet, chemical, and biological exposome) in a niche-spe-
cific manner. However, these effects do not override the vari-
ance contributed by individuals, suggesting that the host is still
the largest confounding factor for the variation observed in the
microbiome. (4) Individuals with IR have a less stable micro-
biome with more diverse microbiome members on skin, possibly
associated with upper respiratory infection, as well as signifi-
cantly altered host-microbiome interactions.

Our study revealed that the stool and oral microbiomes
exhibit the highest level of individualization, likely due to the
unique influence of personalized dietary habits and host-spe-
cific factors, such as IR, impacting the digestive system.'®®
Meanwhile, the skin and nasal microbiomes are less individual-
ized, possibly owing more to individual environmental expo-
sure.”® "% We observed site-specific impact of environmental
factors, such as season, on the microbiomes of these four
body sites. For instance, a decrease in stool microbiome rich-

ness in late summer corresponded with previous findings of
worsened insulin sensitivity during this period.'®”:'%¢ Similarly,
we noted a decline in the richness and evenness of the oral mi-
crobiome from late summer through winter, suggesting a po-
tential influence of environmental factors like the availability of
fresh food and changes in sunlight durations. Meanwhile,
changes in humidity from January to April might explain the
richness increase in skin and decrease in nasal microbiome.*°
These observations underscore the critical role of the host in
modulating the microbiome in response to environmental
fluctuations.

Leveraging dense longitudinal sampling, we were able to
quantify the stability and degree of individuality of the micro-
biomes at different body sites. The strong correlation between
microbiome stability and individuality suggests an active role of
the host in the establishment of commensal bacterial popula-
tions. Notably, this individuality appears to be taxon specific,
pointing to the possibility that the stability of an individual’s mi-
crobiome may be influenced by the dominant bacterial taxa
they carry. For instance, the higher DMI in stool Bacteroidetes
links traditional Bacteroidetes/Firmicutes ratio or enterotypes to
new insights in the context of metabolic disorders.''”'®°
Furthermore, micro-biotypes across different body sites within
the same individual correlate. Individuals with high levels of
Bacteroides in the stool also have high Cutibacterium on the
skin and Prevotella in the oral microbiome. Combined with
our findings on the correlation between microbiome individual-
ity and stability, the low-level engagement between the
core microbiome and cytokines, and the clear host molecular
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type-specific patterns in the host-microbiome interactome, we
propose that the colonization and adaptation of bacteria across
multiple body sites is not random but precisely regulated by
host factors.

Niche-specific traits often emerge through multi-site compar-
isons; for instance, we identified unique characteristics of the
oral microbiome. The recurrence rate of oral bacteria does not in-
crease with DMI, possibly due to a stable and conserved com-
munity structure within the oral microbiome.®*2°° This, coupled
with the oral microbiome’s high intra-site interdependence and
minimal correlation with other body sites, underscores its
specialization. The unique oral environment, shaped by factors
such as saliva, teeth, gums, tongue, and distinct nutrient avail-
ability, likely contributes to this specialization.?°!+2%?

Microbial individuality and stability are closely related to the
host immune system, which is well known to interact with mi-
crobes at multiple body sites.'*"29%2%¢ This interaction modu-
lates both the colonization of microbes, as well as their functional
benefits (e.g., epithelium barrier integrity maintainance***°%). Our
Bayesian model reveals that the interactions between the micro-
biome and cytokines, while present, are subtle. Certain genera
exhibit an approximate 1.5-fold change in response to cytokine
variations. The interaction between inflammatory cytokines and
the microbiome demonstrated that low prevalence genera (i.e.,
stool Proteobacteria) are likely reduced during host inflammatory
events. We also revealed a systematic relationship between cyto-
kines and the genera complexity of the microbiome at each body
site. Notably, the diversity within a subset of the skin microbiome
positively correlates, while that within the stool microbiome nega-
tively correlates with the same group of cytokines. Given the es-
tablished association of IR with low-grade chronic inflamma-
tion,?°® the observed changes in diversity among IR individuals
might be related to their unique cytokine profiles.

We also identified a list of interactions between host plasma
biomolecules and microbiomes (Table S5B). Some of the rela-
tionships, such as alcohol metabolites and the gut microbiome,
have been documented.?°”*°® We also find many correlations
across body sites with host factors; for example, the correlated
Bacteroides in the stool and Cutibacterium in the skin are both
closely related to lipid metabolism.?°° " Our multi-omics
analyses suggest potential causality of host factors in these rela-
tionships, reinforcing the idea of host-driven systematic microbial
coordination across body sites as proposed in gut-brain
axis®'*?'5 and gut-lung axis®'®?'” theories. Since many of the
metabolites, lipids and proteins are signaling molecules (e.g.,
chemokines, hormones, and peptides), these molecules may
play important roles in organismal communication across the
entire host-microbiome ecosystem. Importantly, this interaction
presumably occurs individually, and significantly altered at dis-
ease stage.

Intriguingly, we found Klebsiella on skin was positively asso-
ciated with metabolites of alcohol. This indicates that alcohol
intake may change the host into a Klebsiella-tolerant environ-
ment, resulting in the adaptation and expansion of pathogenic
Klebsiella as previously described.”'® This observation sup-
ports previous findings in alcohol-associated pneumonia,
where alcohol consumption and increased susceptibility to
Klebsiella in the lungs may be a result of either intestinal Kleb-
siella-specific T cell sequestration®'®?'® or alcohol-related

12 Cell Host & Microbe 32, 1-21, April 10, 2024

Cell Host & Microbe

impairment of tryptophan catabolite production/processing in
the gut microbiome, which restricts pulmonary immune cell
trafficking.??%-2*"

Insulin resistance (IR) appears to disrupt the intricate balance
between the host and microbiome, demonstrated by an unstable,
dysbiotic microbiome in IR individuals. In our study, we discov-
ered marked differences in the microbiome composition, diver-
sity, and core members of the stool and skin microbiomes in IR in-
dividuals compared with their IS counterparts. Notably, the
systematic shift in microbiome prevalence indicates an entire mi-
crobial community’s transformation instead of the abnormality of
a few isolated members (Figure S1L). This dysbiosis can poten-
tially alter the complex host-microbiome interaction in IR subjects.
Consistently, we detected reduced host-microbe coordination
and a missing association between oral and skin microbiome sta-
bility. Further, our mediation analysis validates our result about
the reduced gut microbiome-cytokine interaction in IR individ-
uals”®'*® and reveals heightened pro-inflammatory signals linked
to the microbiomes of the upper respiratory tract (oral and nasal
microbiome) in IR individuals. Our in-depth exploration of acute
microbiome changes during infection provides additional sub-
stantiation for this theory. We observed a significant increase in
IR-enriched skin genera such as Peptoniphilus and Intrasporan-
gium (Figure S3D) during the course of a respiratory viral infection,
while a decline in specific genera in the stool microbiome known
for butyrate production, like Clostridium_IV, Lawsonibacter, and
Intestinimonas.??~2?°> While these findings do not explicitly vali-
date the hypothetic link®*® between respiratory viral infection,
chronic metabolic dysregulation, and related complications,
they suggest that infection-related microbial shifts may be associ-
ated with, or even cause, the dysbiosis and complications of
metabolic syndrome as observed in animal models.?*”

Limitations of the study
Caution is warranted in interpreting our results due to inherent lim-
itations. The DMI and FS calculations primarily rely on the Bray-
Curtis (BC) dissimilarity. Therefore, study design such as sample
size, population representation, choice of dissimilarity metric,
and genus internal complexity may impact the accuracy. Addition-
ally, although DMI can provide a quantitative measure
of microbiome individuality, understanding its biological or ecolog-
ical significance can be challenging due to the potential influence
of host genetics, environmental factors, and host regulation.
When the study began, 16S rRNA sequencing was highly effi-
cient for analyzing microbiomes rich in human DNA, such as
those in nasal and skin swabs. However, our team, along with
others, later identified its limitations in accurately capturing spe-
cific bacterial genera in stool and skin microbiomes when
focusing on only certain variable regions.”*?*® Furthermore, un-
like metagenomic sequencing, 16S analysis does not provide in-
formation on viruses and fungi within a microbiome community,
nor does it reveal gene function potentials. Also, our study does
not capture a collective profile of the entire skin or oral micro-
biome, given the distinct characteristics of species at various
sites.”%>""9 |nstead, it represents the microbiome from a single
swab taken from each indicated body site. Furthermore, the
geographical and lifestyle constraints of our participants could
restrict the broad applicability of our conclusions to more diverse
and complex populations.????*° Moreover, we note that our
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analyses primarily determine associations or statistical media-
tion effects, using p values as cutoffs. Despite the bolstered
study power afforded by a longitudinal design,”*"**> some ob-
servations with a smaller sample or effect size may still be over-
looked. Analysis of larger cohorts may reveal further insights.
Additionally, the use of p values has its limitations regardless
of the cutoff,”*® such as its dependence on sample size,”** the
potential for misinterpretation,?*>2¢ and an inflated type 1 error
rate with multiple tests.?*”-?® Finally, while our study highlights
notable associations and suggests potential causations, it
does not establish causation. Our mediation analysis aims to
infer directionality and potential causality, but unobserved fac-
tors could influence these findings. To confirm causative links,
more targeted follow-up studies are essential.

In spite of these limitations, our studies provide a number of
observations concerning the individuality and stability of the mi-
crobiome across multiple body sites during health and disease
and in individuals with different IR/IS status. These observations
have important implications in modulation human molecular
health using personalized prebiotics and probiotics. Our data
also provide a valuable and unique resource for the general sci-
entific community.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Biological samples

EDTA-plasma and PBMCs prepared from this manuscript N/A
intravenous whole blood collection

Stool Sample this manuscript N/A
Skin Swaps this manuscript N/A
Oral Swaps this manuscript N/A
Nasal Swaps this manuscript N/A
Chemicals, peptides, and recombinant proteins

MO BIO’s PowerSoil DNA Isolation Kit Qiagen 47014
AllPrep DNA/RNA/Protein kit Qiagen 80004

Critical commercial assays

Insulin-Suppression Test

Luminex Multiplex Assays

Microbial 16S rRNA V4 sequencing
Clinical Lab Test

Stanford’s Clinical and Translational
Research Unit

Stanford Human Immune
Monitoring Center
uBiome

Stanford’s Clinical and Translational
Research Unit

https://med.stanford.edu/ctru/services.
html#laboratory-services

https://iti.stanford.edu/himc/
immunoassays.html

Caporaso et al.***
https://stanfordlab.com/test-directory.html

Deposited data

Raw 16S rRNA V4 sequencing data, skin
and oral

Raw 16S rRNA V1-3 sequencing data, stool
and nasal

this manuscript

Zhou et al.”®

https://hmpdacc.org

https://hmpdacc.org

Oligonucleotides

27F:5-AGAGTTTGATCCTGGCTCAG-3'
534R: 5'- ATTACCGCGGCTGCTGG-3

this manuscript
this manuscript

N/A
N/A

515F: 5-GTGCCAGCMGCCGCGGTAA-3’ uBiome Caporaso et al.”*?

806R: 5'-GGACTACHVGGGTWTC TAAT-3’ uBiome Caporaso et al.?*°

Software and algorithms

BCL2FASTQ2 lllumina https://support.illumina.com/sequencing/
sequencing_software/bcl2fastq-
conversion-software.html

DADA2 Github?*° https://benjjineb.github.io/dada2/

Phyloseq Bioconductor®*! https://bioconductor.org/packages/
release/bioc/html/phyloseq.html

SPARCC Github®*? https://rdrr.io/github/siskac/discordant/
src/R/SparCC.R

igraph Bioconductor https://igraph.org/

Other

Human Microbiome Project — Core
Microbiome Sampling Protocol A

HMP Protocol”°

# 07-001, v12.0

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Michael P.

Snyder (mpsnyder@stanford.edu).
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Materials availability
This study did not generate new unique reagents.

Data and code availability
The microbiome data are available at https://hmpdacc.org. Other omics data can be accessed through Stanford iPOP website at
https://med.stanford.edu/ipop.html.

The microbiome data specific to this study can be accessed at GitHub Repository (https://github.com/xzhou7/iHMP). The meta-
data corresponding to these data files can be found at Stanford Data Repository (http://hmp2-data.stanford.edu/script.php?
table=subject).

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Cohort

Our study was conducted as part of the integrated Human Microbiome Project of the National Institutes of Health (NIH). This human
study was approved by Stanford University’s Institutional Review Boards (#23602), ensuring ethical compliance and participant
safety. Informed consent was obtained from all participants, who were either at risk for type 2 diabetes or voluntarily interested in
diabetes-related research.

Eligible participants were either at risk for type 2 diabetes or voluntarily interested in diabetes-related research. Exclusion criteria
encompassed hypertriglyceridemia > 4.0 mg/ml—1, uncontrolled hypertension, uncontrolled psychiatric disease, previous bariatric
surgery, pregnancy or lactation, eating disorders (i.e., binge eating disorder, anorexia nervosa, or bulimia nervosa), alcohol use dis-
order, or failure to provide five consecutive samples from at least one body site (stool, skin, nasal, or oral). Consequently, data from 86
participants met the criteria for inclusion in this analysis.

Regarding the allocation of subjects to experimental groups, participants were not divided into separate experimental groups per
se, but rather contributed samples for comprehensive microbiome analysis. This approach was designed to capture a broad spec-
trum of microbiome data across different body sites.

In our analysis, we considered the impact of various factors, including biological age, gender, self-reported ethnicity on the study’s
outcomes. These factors were included in our linear mixed model (LMM) for intra class correlations. Members within the same house-
hold were compared for the family score computation.

METHOD DETAILS

Microbiome sample collection and sequencing

Stool samples were self-collected by participants and other samples were collected by study coordinators following iPOP study
standard operating procedures (SOP), as adapted from HMP_SOP corresponding sections (HMP_MOP_Version12_0_072910).”°
Briefly, retroauricular areas were rubbed with pre-moistened swabs under pressure for skin sampling, anterior nares for nasal sam-
pling, and rear of the oropharynx for oral sampling. Samples are stored at -80 C immediately after arrival. Stool and nasal samples
were further processed and sequenced in-house at the Jackson Laboratory for Genomic Medicine (JAX-GM, Farmington, CT, USA)
and detailed methods are described previously,”® while oral and skin samples were sent to uBiome (uBiome, San Francisco, CA,
USA) for further processing.

After 30 minutes of beads-beating lysis, skin and oral samples were processed using a silica-guanidinium thiocyanate-based nu-
cleic acid isolation protocol”**2*32%* on a liquid-handling robot. The 16S rRNA variable region V4 was amplified by 35 cycles of PCR
using the primer 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGACTACHVGGGTWTC TAAT-3’).*° The DNA from each
sample was barcoded and combined to create a sequencing library. The sequencing library was then purified using columns and
microfluidic DNA fractionation®*° to reduce unwanted DNA fragments. Bio-Rad MyiQ was used to quantify the DNA concentration
of the library using the Kapa iCycler gPCR kit (Bio-Rad Laboratories, Hercules, CA, USA). Sequencing was performed on the lllumina
NextSeq 500 Platform (lllumina, San Diego, CA, USA) via 2 * 150 bp paired-end sequencing protocol.?*®

Raw sequencing data from the stool samples and nasal samples are acquired from our previous publication.”® Briefly, 16S rRNA
gene from V1~V3 hyper-variable region was sequenced with primer pair of 27F (5'-AGAGTTTGATCCTGGCTCAG-3’) and 534R (5'-
ATTACCGCGGCTGCTGG-3') and being barcoded and sequenced on the lllumina MiSeq sequencing platform through a V3 2 x 300
sequencing protocol. The same cutoff used in skin and oral sequencing data was applied to stool and nasal sequencing data in de-
multiplexing. After demultiplexing, reads with Q-scores less than 35 and ambiguous bases (Ns) are trimmed for additional analysis.

Microbiome data processing

Demultiplexed sequenced samples were saved as FASTQ files using BCL2FASTQ software (Version 2.20, lllumina, CA, USA). Se-

quences with barcode mismatches, primer mismatches exceeding one, or Q-scores below 30 were excluded. Due to low overlap

between forward and reverse reads according to FLASH (Version 1.2.11), only forward reads were selected for further processing.
Microbiome sequencing data from four body sites were combined and processed using the DADA2 R package (version 1.16).>*°

Sequences were filtered to remove ambiguous bases (maxN=0) and those with more than two expected errors (maxEE=2). After
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filtering, inter-sample composition analysis was performed based on the learned error rate. An amplicon sequence variant (ASV) table
was constructed, and chimeras were removed using the DADA2 workflow consensus method. Reads passing all filters were aligned
against a trained database of target 16S rRNA gene sequences and taxonomic annotations derived from Version 18 of The Ribosomal
Database Project (RDP)>*” Taxonomy release (Aug 14, 2020). Relative ASV abundance was determined by dividing the count asso-
ciated with that taxon by the total number of filtered reads. Samples with depths below 1,000 reads were removed due to insufficient
sequencing depths®*® following the HMP consortium standard.">"° The Local Outlier Factor (LOF) of each point was calculated on a
sequencing depth to richness (observed ASV) plot, and samples with a LOF greater than 3 (n=7) were removed due to an abnormal
richness-sequencing depth relationship. The average sample sequencing depth after quality control was 23,554 for stool micro-
biome, 74,515 for skin microbiome, 132,912 for oral microbiome, and 24,899 for nasal microbiome. Batch effects were estimated
using PERMANOVA analysis when both batch and subject ID were included, with results showing that the total variance explained
by the 23 batches was 2% for stool, 3% for nasal, 0.6% for oral, and 3.6% for skin samples. The batch effects were considered small,
and no correction for batch effects was applied in the analysis.

Lipidomics analyses

Lipid extraction and data generation were performed as previously described.?*°>" Briefly, complex lipids were extracted from
40 pL of EDTA-plasma using a mixture of methyl tertiary-butyl ether, methanol, and water, followed by biphasic separation. Lipids
were then analyzed using the Lipidyzer platform, which consists of a DMS device (SelexlON Technology, Framingham, MA, USA)
and a QTRAP 5500 (Sciex). Lipids were quantified using a mixture of 58 labeled internal standards provided with the platform
(cat# 5040156, Sciex, Redwood City, CA, USA), and lipid abundances were reported in nmol/g.

To address the high collinearity of the lipidomic data, a customized clustering method was designed. Specifically, the lipidomics
data were divided into six clusters using Fuzzy c-means clustering (R package “Mfuzz” (version 3.15)). For the lipids within each clus-
ter, correlations were computed, and lipids with high correlative relationships (Spearman correlation > 0.8 and BH-adjusted
p-values < 0.05) were grouped into the same module. Community analysis (‘fastgreedy.community’ function from R package
“igraph” (v1.3.5)) was employed to detect the modules. For lipids not assigned to any of the modules, their original lipid species an-
notations were used for downstream analysis (Table S5A).

Metabolomics Analyses

Untargeted metabolic profiling was performed using a broad-spectrum LC-MS platform using a combination of reverse-phase liquid
chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) separations and high-resolution MS.”%%>? Briefly,
plasma metabolites were extracted following solvent precipitation using a mixture of ice-cold acetone, acetonitrile, and methanol
(1:1:1, v/v). Hydrophilic metabolites were separated on a ZIC-HILIC (2.1 x 100 mm, 3.5 um, 200 A; Merck Millipore) while hydropho-
bic metabolites were separated on a Zorbax SBag columns (2.1 x 50 mm, 1.7 um, 100 A; Agilent Technologies). Data was acquired
on a Thermo Q Exactive plus mass spectrometer for HILIC and a Thermo Q Exactive mass spectrometer for RPLC. Raw data were
processed using Progenesis QI (v2.3, Nonlinear Dynamics, Waters) and metabolites were formally identified by matching fragmen-
tation spectra and retention time to analytical-grade standards or matching experimental MS/MS to fragmentation spectra in publicly
available databases. A total of 726 annotated metabolites were retained for downstream analysis.

Proteomics analyses

Plasma proteins were characterized using a TripleTOF 6600 system (Sciex) via liquid chromatography-mass spectrometry (LC-MS)
with SWATH acquisition, following the methodology outlined in a previous study.”® In every injection, 8-ug of tryptic peptides, derived
from undepleted plasma, were loaded onto a ChromXP C18 column (0.3 x 150 mm, 3 um, 120 A, Sciex). The separation of peptides
was achieved through a 43-minute gradient ranging from 4% to 32% B. High sensitivity MS/MS mode was utilized to construct var-
iable Q1 window SWATH Acquisition methods (100 windows) with Analyst TF Software (v1.7). Scoring of peak groups was performed
with PyProphet (v2.0.1)?°® and alignment of peak groups with TRIC,?** each adhering to stringent confidence thresholds (1% FDR at
peptide level; 10% FDR at protein level). The abundance of proteins was calculated as the cumulative sum of the three most abun-
dant peptides.

Luminex multiplex assays for targeted cytokine, chemokine, and growth factors

The evaluation of circulating cytokines, chemokines, and growth factors was undertaken employing established procedures from the
Stanford Human Immune Monitoring Center (HIMC). Specifically, EDTA-plasma was scrutinized using a Human 62-plex Luminex
multiplex assay, consisting of conjugated antibodies (Affymetrix, Santa Clara, California). The raw data obtained from the assay
were normalized against the median fluorescence intensity (MFI) value. Subsequently, variance stabilizing transformation (VST)
was applied to the data to eradicate the batch effect, adhering to our previously outlined methodology.'“® Measurements featuring
background noise (CHEX) exceeding five standard deviations from the mean (mean + 5 x SD) were omitted from the data.

Exposome and associated environmental analyses

As previously outlined,’®?°® the process of data collection for the exposome and associated environmental elements proceeded
accordingly. The chemical exposome was sampled using the RTlI MicroPEM V3.2 personal exposure monitor (RTI International,
Research Triangle Park, NC, USA) for two participants. The MicroPEM, an active air sampling apparatus, operates by circulating
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air at a rate of 0.5 L/min. It was modified to house a customized cartridge containing 200 mg of zeolite adsorbent beads (Sigma
2-0304, Sigma-Aldrich Corp., St. Louis, MO USA) positioned at the airflow’s termination to gather both hydrophobic and hydrophilic
compounds. Each sampling session spanned approximately five days. Post-session, the cartridge was detached and preserved
at -80 °C until subsequent processing. Chemical extraction involved the resuspension of zeolite beads in a sterile Eppendorf LoBind
tube filled with 1 mL of Mass Spec grade methanol. Following a 20-minute incubation period at room temperature, the samples were
subjected to a 20-minute centrifugation process at 22,000 g, also at room temperature. The samples were then analyzed using a
Waters UPLC-coupled Exactive Orbitrap Mass Spectrometer (Thermo, Waltham, MA, USA), yielding a collection of 158 exposome
chemicals. Environmental data, on the other hand, were sourced from several origins. Parameters such as temperature, humidity,
and sampling flow rate were directly recorded by the MicroPEM. GPS coordinates of the participants provided geographical
data. Additional meteorological and demographic information was obtained from public data repositories including the Climate
Data Online (CDO), the US Census Bureau, and local weather stations. This culminated in the collection of 10 environmental feature
data points.

Dietary analyses

Atotal of 25 food items were included in a questionnaire that was completed voluntarily by participants during their routine visit in the
study, using a diet questionnaire hosted on https://www.projectredcap.org/ from our previous report.’'*° The frequency of consuming
each food item was scored in downstream analysis. For breads, biscuits, cakes, pies and pastries, we score the frequency from 0~4,
with the associated frequency per day: 0) less than 1, 1)1 per day, 2)2~3 per day, 3)4~5 per day, 4)6 or more. For other foods we ask
the participants to state the frequency from 6+ times per day to less than once per month.

Insulin-suppression test

A subset of eligible consenting participants (N=58) underwent an Insulin-Suppression Test (IST), as a measure of insulin-mediated
glucose uptake, to evaluate the insulin sensitivity status. Following a 12-hour overnight fast, participants were administered an infu-
sion comprising 0.27 ug/m2 min of octreotide, 25m U/m2 min of insulin, and 240 mg/m2 min of glucose over a three-hour period
during their visit to Stanford’s Clinical and Translational Research Unit (CTRU). Blood samples were procured at ten-minute intervals
during the final half-hour of the infusion, resulting in a total of four blood draws. These samples were analyzed to determine plasma
glucose and insulin levels. The mean value of the four steady-state plasma glucose (SSPG) and insulin concentrations were subse-
quently calculated. Participants were then categorized based on their SSPG values®*°: those with SSPG < 150 mg/d| were classified
as insulin sensitive (IS) (n=28), while those with SSPG > 150 mg/dl were classified as insulin resistant (IR) (n =30). Participants who
were unable to provide measurements due to personal or medical circumstances were allocated to an indeterminate group (Un-
known) (n= 28).

Clinical lab test

Clinical lab tests were performed at the Stanford Clinical Lab following its guideline of blood and urine collection and submission
(https://stanfordlab.com/test-directory.html). The test includes a metabolic panel, complete blood count panel, glucose, HbA1C, in-
sulin measurements, hsCRP, IgM, lipid panel, kidney panel, liver panel. Detailed measurements and annotations are provided as a
supplementary table (Table SEA).

QUANTIFICATION AND STATISTICAL ANALYSIS

UMARP for microbiome distribution

The distribution of the microbiome was visualized using Uniform Manifold Approximation and Projection (UMAP), facilitated by the R
package "Seurat (Version 4.0)". Prior to the application of UMAP, the count data were first normalized to relative abundance and
scaled to represent one million reads per sample. A total of 1524 variable features were identified and encapsulated within a Seurat
object. From this point, a distance matrix was produced through the utilization of the R package "Vegan (Version 2.6-2)", employing
Bray Curtis dissimilarity. This distance matrix was subsequently transformed via Principal Coordinate Analysis (PCoA). The first ten
dimensions from the PCoA (out of a total of 1094 generated) were used to determine neighboring relationships. The UMAP projection
was then calculated, with default settings employed. This projection was made possible by invoking Python’s UMAP via reticulate.
The final UMAP results were visualized using the first two dimensions.

Intraclass correlation

Intraclass correlation Coefficient (ICC) was calculated from Linear Mixed Models, in which we modeled random intercepts but a fixed
slope, allowing different personal levels between individuals.”® We first linearly transformed each analyte (when applicable) and stan-
dardized the total variation to 1 before applying ‘Imer’ function from R package “Ime4 (V1.1-30)”, with the formula as:

Exp ~ 1 + Days + (1|SubjectID)

Where Exp was the linearly transformed and standardized values of each analyte, Days was the length of time individuals partic-
ipated in the study, Subject/D was the subject ID associated with each participant.
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We then used ICC as the proportion of total variation explained by subject structure in the cohort by Vypjectin/Viotals in Which V was
the variance from the corresponding component extracted by Varge, and Vioig Was 1.

Permutation test on Bray Curtis Distance Comparison

The Bray-Curtis (BC) distance was used to quantify the degree of similarity between two microbiome samples, with the ASV serving
as the unit for calculating dissimilarity for the complete microbiome sample or for specific taxa. Similarity metrics were calculated
pairwise for both intra-individual and inter-individual comparisons. A permutation test was employed to estimate the null distribution
while accounting for the varying sample sizes of each participant. The null hypothesis being tested was that there is no difference
between intra-individual and inter-individual distances.

For each microbial genus, a test statistic was calculated as the mean difference in BC distances between intra-individual and inter-
individual comparisons. To estimate the null distribution, all sample labels were randomly permuted, and the BC distances were
computed pairwise. This process was repeated 10,000 times, generating a null distribution of test statistics.

P-values were then calculated by determining the proportion of permuted test statistics that were at least as extreme as the observed
test statistic. In the case of multiple comparisons, such as for different microbial genera, p-values were adjusted using the BH procedure
to control the false discovery rate. Statistical significance was determined using a threshold of BH adjusted p-value < 0.1.

Degree of microbial individuality
Degree of Microbial Individuality (DMI) was measured as the mathematical difference between a given genus regarding their popu-
lational median of the inter-individual BC distance and the median of the intra-individual BC distance. To assess the robustness and
variability of the DMI estimates, we employed a bootstrap resampling technique.?®”

First, we summarized the between-sample distance of genera with longitudinal prevalence greater than 10% at a given body site.
The distance of sample pairs was then allocated into inter-individual or intra-individual groups. For each genus, we resampled the
data with replacement and computed the DMI using the following formula:

DMIi = BC inter-individual - BC intra-individual

This resampling process was repeated multiple times to obtain a distribution of DMI estimates, which enabled us to assess the
variability and robustness of our results.

By employing the bootstrap resampling technique, we aimed to gain insights into the reliability of our DMI calculations and under-
stand how sensitive they were to potential variations in the data. This approach provided a more comprehensive understanding of the
degree of microbial individuality across various body sites and taxa. To ensure the accuracy of our results, we considered a DMI to be
reliable only if that DMI’s standard deviation (SD) of the bootstrapped distribution is less than 15 times of the mean DMI. This criterion
helped to filter out any DMI estimates that might be influenced by high variability or uncertainty in the data. Detail of the bootstrap
result was included in our supplementary materials (Table S2C), where we used column “confidence” to distinguish DMI values
with high or low reliability. The total number of genera reported per region after bootstrapping included: 105 for stool, 35 for skin,
63 for oral, and 33 for nasal samples.

To quantify the cumulative DMI for each individual, the DMI score was multiplied by the average relative abundance of each genus
for a given individual. This generated a weighted DMI (abundance_dmi) that represented the product of the DMI score and the ge-
nus’s relative abundance. The total DMI for each individual was computed by summing these weighted DMI values across all genera.
This approach offered a comprehensive measure of the overall DMI per individual, accounting for the contribution of each genus
weighted by its relative abundance in the individual’s microbiome.

Family score

To assess the impact of a shared living environment on microbiome variability, we introduced a metric called the Family Score (FS).
The FS represents the relative influence of a shared environment on the inter-individual dissimilarity of a given genus within cohab-
itating pairs. We began by excluding genera with a longitudinal prevalence of less than 10%, leaving 141 for stool, 119 for skin, 41 for
oral, and 33 for nasal samples. For each remaining genus, we computed the "within-family" inter-individual Bray-Curtis (BC) distance
between cohabiting pairs. We also calculated the median inter-individual BC distance (BC inter-individual) and intra-individual BC
distance (BC intra-individual). Using these values, we computed the FS for a given genus 'i’ with the following formula:

Family Scorei = (BC inter-individual - BC intra-family) /(BC inter-individual - BC intra-individual)

This formula normalizes the FS to a scale that allows for comparisons across families and non-families. An FS of 0 indicates that the
shared living environment has no impact on inter-individual dissimilarity, while an FS of 1 suggests that living in the same environment
causes inter-individual dissimilarity to resemble intra-individual dissimilarity. We truncated the FS at 0 and 1 to maintain consistency
in the comparison scale. Any FS values greater than or equal to 1 were assigned a value of 1, and values less than or equal to 0 were
assigned a value of 0.

Classification of the microbiome genera by their longitudinal prevalence
The microbiome genera were categorized as the core microbiome, opportunistic microbiome, and middle group based on their lon-

gitudinal prevalence.?*®2%° Calculation of prevalence was based on the presence or absence of reads from each sample. For each
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sample, the relative abundance of each genus was first transformed to 1 if it was greater than 0; then, the proportion of 1 for each
genus in each participant was determined as the longitudinal prevalence. Then the genera were assigned to a group based on their
longitudinal prevalence: core microbiome: longitudinal prevalence > 80%; middle group: 20% < longitudinal prevalence < 80%;
opportunistic microbiome: longitudinal prevalence < 20%.

Body site-specific longitudinal model for Bray-Curtis distance

To estimate the effect of body site on the change in BC distance over time, we used a linear mixed effects regression with the BC
distance as the response variable implemented in the “Ime4” package in R.2°" The BC distance of all pairwise samples was trans-
formed to a more normally distributed dataset. The transformation method used was the log-log transformation, which has been
widely used in survival analysis studies. Specifically, the transformation was performed by applying the formula:

transformed_dist = log10(-log10(1-dist))

Atotal of eight different transformations were evaluated (variations of logarithmic, square root, arcsine, and ratio transformations of
the original distance) to identify the most suitable transformation for our analysis. To assess the normality of the transformed dis-
tances, an Anderson-Darling test was performed, and the best method was selected by Anderson-Darling’s statistics A.%%?

Fixed effects included an interaction between the body site and time, and with a random intercept for each individual. Time was
normalized to the days from the first sample for each individual. The model was optimized using the “nlopwrap” method®®® and
nested models were compared by likelihood ratio test using the “Imtest” package in R.?®“ Differences in the slopes of the body sites
over time were assessed by F-test with Satterthwaites’s degrees of freedom.?®® For the comparisons between body sites, the model
was constructed as:

dist ~ -1 + diffdays«dataset + (1| subject_id)

For the comparison between IR and IS participants, the model was constructed as:
dist ~ -1 + IRISxdiffdays + (1| subject_id) + (1 + IRIS | subject_id)

Where dist was the pairwise BC distance, diffdays was the date interval between two samples, subject_id was the subject ID asso-
ciated with each participant, and /RIS was the insulin sensitivity status of each participant.

Bayesian mixed-effects model for microbial taxa and cytokine interactions

We utilized a Bayesian negative-binomial longitudinal mixed-effects model to analyze the interactions between microbial taxa and
cytokines. This model choice addresses several key characteristics of our data: the compositional nature of microbiome data, the
presence of zero-inflation and high skewness in cytokine measurements, and the repeated measurements of both cytokine and mi-
crobiome data in our study cohort (n=62 with longitudinal, date-matching measurements). The model’s capacity to handle the highly
skewed cytokine data was a critical factor in its selection, especially given the dramatic range of cytokine surges observed in our
dataset, ranging from a 10.8-fold increase for MIP1B to as much as a 618-fold increase for LEPTIN. Each genus’s reads count
was modeled as a sparse-matrix response variable, with a plasma cytokine level MFI quantity and time as fixed effects and a random
intercept for each individual, following the formula:

M.l = X.ipB+Z.ib_i+e.i

Where Mi is a vector of the genus-level microbe relative abundances for each participant i, Xi is the design matrix for the fixed ef-
fects, 8. Each row of matrix Xi contains the terms (1) time (days post-study start), Di, and (2) cytokine measurements, Yi, from 1 ton. Zi
is the random effects design vector of 1’s denoting a random intercept, bi is a scalar for each participant, and &i is a zero-centered
error term.

Posterior sampling was performed using four chains, 5,000 iterations per sample, and a 1,000-iteration burn-in of a No-U-Turn
Sampler implemented in the “brms (Version 2.18.0)” package in R.?°°"2°° The iteration plots and posterior predictive distributions
were visually inspected for chain convergence. Microbe genera and cytokines above the limit of detection in less than 10% of the
samples were excluded from the analysis. A microbe-cytokine association was considered significant if the 95% credible interval
on the fit coefficient of the cytokine term did not include zero.

In our model, the beta represents the effect size. We estimated the variance explained by the model using the “bayes_R2” function
from the brms package, and this information is included in the final table. While we provide p-values for each pair, as inferred from a
method detailed previously,?’® and the subsequent BH-adjusted p-values, it's important to note that these are supplementary. In our
Bayesian analysis, the determination of significance is based on the commonly practiced use of credible intervals derived from Mar-
kov Chain Monte Carlo (MCMC) sampling.

Correlation network analysis

Correlation network analysis was conducted to construct a network between the microbiome (from stool, skin, oral, and nasal sam-
ples) and internal multi-omics data (proteome, metabolome, and lipidome) from plasma, following a modified version of published
methods.’° Initially, time points with unmatched collection dates for each pair of microbiome and internal omics data were excluded.
Subjects with fewer than five samples for a specific microbiome type were also removed from the corresponding correlation analysis.
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The microbiome data, which included relative abundance or observed ASV richness at the genus level, was processed by retaining
only genera detected in at least 10% of all samples. Centered log ratio (CLR) normalization was applied to address compositionality in
microbiome data using the R package "compositions" (Version 2.0-4). Proteome, metabolome, and lipidome module data were log,
transformed.

To account for repeated sampling from the same subject, a linear mixed-effects model was utilized, incorporating subject ID as a
random effect using the R package "Ime4" (Version 1.1-30). Spearman correlations were then calculated, and p-values were adjusted
using the Benjamini & Hochberg method. For correlation network construction, BH adjusted p-values < 0.2 were included. In the
linear mixed model assessing longitudinal effects, the estimated correlation coefficient served as the measure of effect size
(Figure S6B).

To gauge the robustness of the point estimation for the proportion of microbiome genera that are significantly correlated, we em-
ployed a bootstrapping approach. Specifically, we determined the percentage of significantly correlated genera by dividing the num-
ber of significantly correlated pairs by the total possible pairs. We bootstrapped this procedure 20 times to obtain mean and standard
deviation values for the percentage of significantly correlated microbiome genera. These values were then used to compare the scale
of interdependency of microbiome across different body sites. To ascertain if one body site exhibits a significantly greater interde-
pendency compared to another, we employed the two-sided Wilcoxon rank-sum test. The significance of these comparisons was
determined using p-values adjusted for multiple testing using the BH correction.

The estimation of inter-individual microbiome-wide correlation was conducted utilizing the SparCC method (R package discor-
dant, Version 1.25.0), a methodology specifically tailored for compositional data.?***”' To prepare the microbiome relative abun-
dance data for this analysis, the data were multiplied by 20000 and subsequently rounded, a process designed to convert proportions
into data resembling counts. Following this, the SparCC method was employed to compute the correlation matrix. This matrix was
then transformed into a long format data frame, with each row representing a pair of genera and their corresponding correlation co-
efficient. To assess the statistical significance of the observed correlations, a permutation test was implemented. For each pair of
genera, the sample labels were randomly permuted, and the permuted SparCC correlation coefficient was calculated. We executed
this procedure 10,000 times to produce a null distribution of SparCC correlation coefficients. Following this, we counted the in-
stances where our observed correlation coefficient was encompassed within this null distribution. A finding was deemed "non-sig-
nificant" if the correlation coefficient from any of the 10,000 permutations was more extreme than the coefficient from our original
analysis, and subsequent raw p-value was computed based on the permutation results. Results with the BH adjusted p-value < 0.1
from this permutation was included in our final report.

The inter-omics correlation network was visualized using the R packages "ggraph" (Version 2.0.5), "igraph" (Version 1.3.2), and
"tidygraph" (Version 1.2.1) under the "kk" layout.

Pathway enrichment for proteins correlated with the microbiome

The enrichment of pathways corresponding to proteins associated with the microbiome from four different body sites was achieved
via the R package "clusterProfiler (Version 3.15)". The proteins in question served as input for pathway enrichment, specifically
through Gene Ontology (GO) processes, enabling the identification of statistically significant pathways. The determination of these
pathways was reliant on Fisher’s exact test.

GO terms of interest were isolated based on their Benjamini-Hochberg adjusted p-values; terms with p-values below 0.05 were
retained for ensuing analyses. For the GO terms that demonstrated significant enrichment, the R package "simplifyEnrichment"
was employed. This package facilitated the calculation of similarities between each pair of GO terms. The construction of a network
only incorporated edges that exhibited similarities exceeding 0.70.

In order to discern modules within the correlation network, community analysis was undertaken utilizing the R package "igraph
(Version 1.3.4)". To encapsulate each module, only the GO term that presented with the smallest Benjamini-Hochberg adjusted
p-value was preserved.

Mediation analysis

A mediation analysis was conducted to investigate the potential influence of microbiomes from stool, skin, oral, and nasal sources on
phenotypes through internal multi-omics data, including proteome, metabolome, lipidome, and cytokine.®®?"2”® Phenotype data
were obtained via clinical laboratory tests of plasma samples. The associations between the microbiome and phenotype (Direct Ef-
fect), as well as internal omics data (Indirect Effect), were initially determined as outlined in the ’correlation network analysis’ section.
Only significant associations (BH adjusted p-values < 0.2) were considered for subsequent mediation analysis. The linear regression
model from R package "mediation" was employed for the mediation analysis. Ultimately, pairs with significant Average Causal Medi-
ation Effects (ACME, p-values < 0.05) were reported, representing the microbiome’s impact on phenotype measurements through
internal multi-omics.

To control the false discovery rate (FDR), a reverse mediation analysis was performed by exchanging the mediator with effects (i.e.,
the microbiome influencing internal omics data via phenotype), and pairs with significant ACME in reverse mediation (p-values < 0.05)
were excluded from the final results. Comparisons between body sites and insulin sensitivity statuses were conducted for each data-
set using the Fisher exact test. Initially, it was hypothesized that the true meditative effect of each mediated pathway (e.g., genus i ~
cytokine j ~ immune k) was considerably large (n= 1 x 108). Subsequently, the presence of a significantly different meditative linkage
between the designated comparison pairs was assessed.
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Principal variance component analysis (PVCA)

To assess the variation in microbiome data based on individual and season, the principal variance component analysis (PVCA)*"* was
performed via R package "pvca (Version 3.15)”. The PVCA is a combination of the principal component analysis and variance com-
ponents analysis https://www.niehs.nih.gov/research/resources/software/biostatistics/pvca/index.cfm, which were originally em-
ployed to assess batch effects in microarray data®’® and widely used for microbiome related variance decompositions.>”®2”” For
microbiome samples in each body site, the season was determined by subtracting the date of collection from the first day of the
year (from 1-365 days). Each sample’s participant ID and season were then entered into the PVCA as variables. Then, the "ggtern
(Version 3.3.5)" R package was used to visualize the data.

Deconvolute the environmental effect on the microbiome

Exposome and diet data analysis

To investigate the influence of exposome and diet data on the microbiome from different body sites, exposome data (chemical and
environmental) were collected and processed as previously described.?* Diet data were collected and detailed in the methods sec-
tion above. As an example, the analysis process for exposome chemical data is described below.

Microbiome samples with matching exposome chemical data within a 3-day period were selected for subsequent analysis
(Nchemical = 8, Nenvironmental = 32 (Nparticipant1 = 13; Nparticipantz = 19)). Microbiome data were normalized using the centered log ratio
(CLR, “clr” function from R package “compositions™), and exposome data were log,-transformed and auto-scaled.®® Principal
component analysis (PCA) was performed on both microbiome and exposome data. Principal components (PCs) from the micro-
biome and exposome were further analyzed, with PCs accounting for over 80% of cumulative explained variation being included.
A linear regression model was constructed using PCs of microbiome data as the dependent variable (Y) and corresponding ex-
posome PCs as the independent variable (X). The R2 value was extracted to represent the exposome’s contribution to microbiome
data. The same method was applied to evaluate the dietary effect on the microbiome from four body sites.

Seasonal effects on microbiome
Z-score normalized microbial data or microbial diversity was systematically analyzed using Generalized Additive Mixed Models
(GAMMSs).?”® For each genus of interest, the model was formulated as:

genera/diversity ~ IRIS + s(Time,bs = "cc”) + (1|Subject_ID), knots = list(TimeOfYear = c(0,366)

In this model, the response variable ‘genera’ represents the z-score normalized microbial relative abundance. The fixed effects
components include the status of insulin sensitivity (/RIS) and a cyclic cubic spline smoother for the Time variable, encapsulating po-
tential cyclical patterns across the year (from 0 to 366). The term (7|Subject_ID) includes a random intercept for each subject, to ac-
count for within-subject correlation.

The model was fitted using the Restricted Maximum Likelihood (REML) method for robust estimation of smoothing parameters in a
complex and unbalanced design and incorporated the use of ’ImeControl’ function from the 'nime’ package in R to handle the opti-
mization process of the mixed-effects models. This was conducted by specifying ’optim’ as the optimizer for the model fit.

The resulting model provides insight into the temporal dynamics of gene expression and its relationship with insulin sensitivity sta-
tus (IRIS), considering the random effects associated with each subject. The graphical representation of these models for each genus
and p value for smooth terms were saved for further exploration.

The effects of infection on microbiome

The analysis of the effects of infection on the microbiome involved genera that were significantly altered during infection periods. The
methodology implemented was informed by a previous method for estimating infection processes based on self-reported
symptoms.”®

The infection status was classified into longitudinal categories: pre-healthy (-H) state, event early (EE) state, event late (EL) state,
recovery (RE) state, and post-healthy (+H) state. The pre-healthy state comprised the healthy baselines observed within 186 days
preceding the onset of the infection event. The EEs state was characterized by visits occurring between day 1 and day 6 of the event.
The EL state spanned visits on days 7 to 14 since the onset of the event. The recovery state included visits within the 15-40-day
period since the event’s inception, and the post-healthy state encompassed visits within the 186 days following the event.

The categorization of these states was designed as a continuous progression from the pre-healthy to post-healthy state, with the
average duration of an infection event being 88 days. 58 infection events were detected among 32 participants (IS: 7 participants,
IR:12 participants, Unknown:13 participants) in our study. Each event was assigned a unique identification consisting of the subject
ID and the event number. The progression of infection states within an event was tracked in the order of pre-healthy, event early,
event late, recovery, and post-healthy.

In order to assess the effects of these infection states and insulin sensitivity status on microbiome genera, GAMM was constructed:

genera ~ IRIS + s(Infection_status,bs = "cc”,k = 5)+ (1|event)

In this model, ‘genera’ represents the z-score normalized microbial relative abundance, IRIS indicates the insulin sensitivity status
of each participant, and ’Infection_status’ is a smoothing function of the longitudinal infection states with cyclic cubic regression
splines. The term ’(7|event)’ is a random intercept for each infection event.
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For the evenness changes during infection among insulin resistant (IR) and insulin sensitive (IS) individuals, the model was refor-
mulated as follows:

evenness ~ s(Infection_status,bs = "cc”,k = 5)+ (1|event)

In this adjusted model, ’evenness’ denotes the outcome variable, specifically the Subject ID based Z-score transformed Pielou’s
evenness measure of the microbiome sample, indicating the diversity of the microbial community. The remaining components of the
model and their interpretations align with the previously described model.
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