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SUMMARY
Metabolism during pregnancy is a dynamic and precisely programmed process, the failure of which can bring
devastating consequences to the mother and fetus. To define a high-resolution temporal profile of metabo-
lites during healthy pregnancy, we analyzed the untargeted metabolome of 784 weekly blood samples from
30 pregnant women. Broad changes and a highly choreographed profile were revealed: 4,995 metabolic fea-
tures (of 9,651 total), 460 annotated compounds (of 687 total), and 34 humanmetabolic pathways (of 48 total)
were significantly changed during pregnancy. Using linear models, we built a metabolic clock with five me-
tabolites that time gestational age in high accordance with ultrasound (R = 0.92). Furthermore, two to three
metabolites can identify when labor occurs (time to delivery within two, four, and eight weeks, AUROC R
0.85). Our study represents a weekly characterization of the human pregnancy metabolome, providing a
high-resolution landscape for understanding pregnancy with potential clinical utilities.
INTRODUCTION

Pregnancy is one of themost critical periods for mother and child

(Alkema et al., 2016; Say et al., 2014). It involves a tremendous

flow of physiological changes and metabolic adaptations week

by week, and even small deviations from the norm might have

detrimental consequences at different pregnancy stages. For

example, approximately 20% of all pregnancies end in miscar-

riage (< 20 weeks), and around 10% end in preterm birth (<

37 weeks) (Blencowe et al., 2013; Wang et al., 2003). The latter

is the leading cause of global neonatal morbidity and mortality

(Blencowe et al., 2013). Of 200 million annual pregnancies,

300,000 pregnancy- and birth-related maternal deaths and 7

million perinatal deaths occur worldwide (GBD 2013 Mortality

and Causes of Death Collaborators, 2015; Sedgh et al., 2014).

With a better understanding of how pregnancy is regulated,

even small improvements in obstetric health care can enhance

the well-being of many women and children.

An accurate estimation of the timing of pregnancy and birth is

important for many clinical decisions in obstetrics, including

determination of preterm birth and related treatment regimens
1680 Cell 181, 1680–1692, June 25, 2020 ª 2020 The Authors. Publis
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(Committee on Obstetric Practice, the American Institute of Ul-

trasound in Medicine, and the Society for Maternal-Fetal Medi-

cine, 2017). The current clinical method of determining the

gestational age and due date is based on information about

the last menstruation date, which can be imprecise, or ultra-

sound imaging, which depends on accessibility at early preg-

nancy (Committee on Obstetric Practice, the American Institute

of Ultrasound in Medicine, and the Society for Maternal-Fetal

Medicine, 2017). Missing the time window is common even in

developed countries: in the United States, approximately

900,000 pregnancies annually do not have a prenatal visit before

the second or third trimester (Martin et al., 2018).

The maternal circulatory system connects with the fetal circu-

latory system through the placenta, carrying bioactive molecules

and biomarkers such as steroid hormones, micronutrients, and

circulating nucleic acids, whose concentrations alter as gesta-

tion progresses (King, 2000; Koh et al., 2014; Tulchinsky et al.,

1972; Wang et al., 2016). Recent work on cell-free RNA suggests

that markers in maternal blood can be used to estimate gesta-

tional age, but sequencing can be expensive and time-

consuming, and the accuracy, at present, is not ideal (Ngo
hed by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Table 1. Demographics and Birth Characteristics of the

Discovery and Validation Cohorts

Discovery Test Set 1 Test Set 2

N = 21 N = 9 N = 8

Demographics

Maternal age at birth,

years

29.8 ± 3.1 29.7 ± 3.3 31.4 ± 1.0

Previous births, No. (%)

0 13 (61.9) 6 (66.7) 4 (50.0)

1 8 (38.1) 2 (22.2) 3 (37.5)

R 2 0 (0) 1 (11.1) 1 (12.5)

Pre-pregnancy BMI,

kg/m2

22.1 ± 2.9 21.2 ± 3.4 21.1 ± 1.6

Smoking during pregnancy, No. (%)

Yes 0 (0) 0 (0) 1 (12.5)

No 18 (85.7) 9 (100) 6 (75.0)

Missing 3 (14.3) 0 (0) 1 (12.5)

Alcohol during pregnancy, No. (%)

Yes 5 (23.8) 1 (11.1) 1 (12.5)

Average number of

units per week

0.80 1.0 0.25

No 13 (61.9) 8 (88.9) 6 (75.0)

Missing 3 (14.3) 0 (0) 1 (12.5)

Birth characteristics

Gestational age, days 281 ± 8.4 280.7 ± 8.3 279.3 ± 9.5

Mode of delivery, No. (%)

Spontaneous vaginal birth 10 (47.6) 5 (55.6) 4 (50.0)

Induced vaginal birth 7 (33.3) 1 (11.1) 3 (37.5)

C-section before onset

of labor

1 (4.8) 3 (33.3) 1 (12.5)

C-section during labor 3 (14.3) 0 (0) 0 (0)

Birth weight, grams 3,638 ± 500 3,803 ± 662 3,362 ± 493

Birth length, centimeters 52.4 ± 2 53.3 ± 2 51 ± 2.3

Gender of child, No. (%)

Male 9 (42.9) 5 (55.6) 5 (62.5)

Female 12 (57.1) 4 (44.4) 3 (37.5)

Values are means (SDs) or numbers (percentages).
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et al., 2018). Therefore, a more accurate and cost-effective

method for estimating gestational age and delivery time,

possibly using blood metabolites, is needed. In addition, current

clinical tests often only focus on a few markers, whereas

research covering more molecules often examines the profiles

at one or a few time points during pregnancy (Bahado-Singh

et al., 2012; Chan et al., 2003; Dudzik et al., 2014; Gagnon

et al., 2008; Kenny et al., 2010; Koh et al., 2014; López-Hernán-

dez et al., 2019; Romero et al., 2010; Sachse et al., 2012; Soldin

et al., 2005). Thus, a high-resolution landscape of pregnancy-

related metabolites during healthy pregnancy and the post-

partum period is still poorly understood.

Here, we use untargeted metabolomics (Kaddurah-Daouk

et al., 2008) to systematically profile blood metabolites

throughout pregnancy with weekly sampling of maternal blood.
The study identified a large number of pregnancy-relatedmetab-

olites and metabolic pathways offering a comprehensive view of

the metabolite changes during healthy pregnancy and the post-

partum period. Leveraging the high-resolution datasets, we built

a metabolic clock that not only predicts gestational age in high

accordance with the first-trimester ultrasound, the clinical gold

standard, but also recovers personal pregnancy variations unde-

tected by ultrasound but capable of affecting delivery time.

RESULTS

Danish Pregnancy Cohort: A Study of Normal Pregnancy
with High-Density Sampling
To capture the highly dynamic pregnancy process at high reso-

lution, we established a multi-year single-center Danish normal

pregnancy cohort and a design of high-density blood sampling.

Consenting female participants submitted weekly blood draws

beginning in week 5 of pregnancy and ending in the postpartum

period. A total of 30 women with weekly blood samples were as-

signed to a discovery (N = 21) and a validation (test set 1, N = 9)

cohort (Table 1; Figures 1A and S1A). The samples were

analyzed in two separate years. In addition, another separate

set of women (N = 8) was included as the secondary validation

cohort. These samples were analyzed independently three years

apart from the discovery cohort (test set 2) (Table 1).

Weekly Pregnancy Progression Is Precisely Ordered by
Metabolites
We randomized the 784 samples from the first 30 subjects within

each cohort (Discovery and test set 1), processed them by using

a standardized protocol (Contrepois et al., 2015), and analyzed

them by liquid chromatography-mass spectrometry (LC-MS)

for untargeted metabolomics across two separate years. After

quality control, data filtering, and normalization (see STAR

Methods) (N = 30), we identified 9,651 metabolic features across

the different samples. Of these, 4,995 features (51.7%) were

altered during pregnancy and/or the postpartum period (false

discovery rate [FDR] < 0.05), suggesting extensive metabolic

changes occur during pregnancy. We examined the data glob-

ally with principal component analysis (PCA), in which the sam-

ples were distributed on the basis of the first two principal com-

ponents according to their gestational stages (Figure 1B; Scree

plot in Figure S1B and the partial least-squares discriminant

analysis [PLS-DA] results in Figure S1C), regardless of individual

variation and batches (Figures S1D and S1E). Interestingly, we

found that metabolites with uni-directional behaviors dominated

the features, and over half of them increased across pregnancy

until reaching their peaks immediately before labor (Figures S1F

and S1G).

To understand the potential function of pregnancy-related

metabolites, we first annotated metabolic features by using an

in-house library and a combined public spectral database (see

details in STAR Methods). A total of 952 metabolic features

were mapped to 687 compounds, which include plasma metab-

olites with important functions in humans. We then applied

significance analysis for microarrays (SAM) to examine the cor-

relation between the abundance of each compound and the

reported gestational age of a woman at blood sampling. Among
Cell 181, 1680–1692, June 25, 2020 1681
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Figure 1. Untargeted Metabolomics Cluster the Weekly Plasma Samples Precisely According to Gestational Age

(A) Sampling scheme. Note that validation cohort refers to test set 1 in Table 1.

(B) Principal component analysis (PCA) distributed individual samples according to pregnancy stages (based on 9,651 features). The two PCs explaining the

largest part of the variation are shown.

(C) Plot shows the top 15 increased (red) and decreased (blue) metabolites (with MSI level 1 or 2 identification) in pregnancy.

(D and E) Heatmap displays the metabolite signal intensity averaged across individuals, showing the top 68 altered metabolites (D) increased and (E) decreased

by the end of pregnancy. Abbreviations are as follows: PP, postpartum. The gestational ages (GAs) were calculated by scaling delivery events to 40 weeks. The

(legend continued on next page)
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the 687 annotated compounds, 460 compounds were signifi-

cantly associated with pregnancy (67.0%; FDR < 0.05, SAM).

In addition, 264 compounds were identified with ametabolomics

standards initiative (MSI) level 1 or 2 identification (Viant et al.,

2017), among which 176 compounds (66.7%) were significantly

associated with pregnancy, as determined by linear regression

with gestational age (FDR < 0.05, SAM).

Our dense sampling revealed detailed temporal patterns of

molecular changes. Among the top 68 metabolites (of the 176)

that changed over 50% during whole pregnancy, those that

increased (N = 30) included steroid hormones estriol-16-glucu-

ronide, estrone 3-sulfate, and tetrahydrodeoxycorticosterone

(THDOC). All three increased more rapidly than the well-known

steroids progesterone and 17a-hydoxyprogesterone (FDR <

0.05, SAM) (Figures 1C and 1D). By contrast, the topmetabolites

that decreased during pregnancy (N = 38) were mostly lipids or

lipid-like molecules, such as monoacylglycerides (MGs), lyso-

phosphatidylcholines (LPC or lysoPC), and oleoylcarnitine (Fig-

ures 1C and 1E). Hierarchical clustering of the weekly samples

on the basis of the top 68 altered metabolites revealed a week-

order mostly consistent with the actual progression of gesta-

tional age (Table S1; Figures 1D and 1E). Intriguingly, most of

these metabolite changes rapidly returned to baseline after

childbirth (postpartum) (Figures 1B and 1D and 1E). Together,

these results suggest a dramatic and programmed change of hu-

man blood metabolites at a system level during pregnancy.

Metabolite Groups Altered during Pregnancy
To detect the functional groups of metabolites that change during

pregnancy, we performed correlation analysis on the temporal in-

tensity profiles of the top 68 pregnancy-related compounds

mentioned above. In Figure S2,metabolites thatwere significantly

increased or decreased tended to cluster together. Using existing

structural and biological information, we first categorized the top

changing compounds in pregnancy into seven groups. Interest-

ingly, compounds of the same groups tended to cluster together

in the correlation matrix. On the basis of the correlation relation-

ship, we constructed a regularized partial correlation network us-

ing all pregnancy-related compounds to explore the potential reg-

ulatory relationships (Figures 2A and S2B). The topology of the

network indicates that different metabolite groups occupied

different positions; dense interactions occurred between both in-

ter- and intra-metabolite groupswith the densest interactions be-

tween central steroid hormones (Figure 2A). These findings high-

light that even though the amount of each compound dynamically

changes during pregnancy, a highly coordinated metabolite reg-

ulatory network underlies the pregnancy process.

We next examined the main clusters that were present in the

correlation analysis. Three main clusters emerged from the hier-

archical clustering of metabolites (Figure S2A), with a steroid

cluster (e.g., antrostane-3,17-diol, estriol-16-glucuronide, pro-

gesterone, 17a-hydroxyprogesterone, and THDOC) sitting be-

tween the large clusters of lipids and non-lipid molecules.

Compared with the other steroids in this cluster that slowly but
week order, which mostly coincides with the actual order, was ordered by hierarc

before 14 weeks of all women were used as the baseline.

See also Figure S1 and Table S1.
steadily increased throughout pregnancy, estriol-16-glucuro-

nide exhibited a rapid increase before week 24, (Figures 1D

and 2B). Nearly all upregulated metabolites positively correlated

with this cluster of steroids, whereas all downregulated metabo-

lites negatively correlated with this cluster (Figure S2A). This

result suggests that different steroid hormones might regulate

global metabolome dynamics during pregnancy.

Within the lipid cluster, intra-correlation was relatively high. The

largest cluster was composed of LysoPCs (Figures 2A andS2A), a

class of phospholipids. LysoPCs gradually decreased during

pregnancy and increased after childbirth in a pattern that highly

correlates with the steroid dehydroepiandrosterone sulfate

(DHEA-S) (Figure 2C). LysoPCs are bioactive pro-inflammatory

lipids that have been linked with organismal oxidative stress

and inflammation (Sevastou et al., 2013). The second-largest

cluster of lipids included several free fatty acids that were highly

correlated within the cluster (Figures 2A and S2A). Long-chain

fatty acids showed intricate dynamics in their amounts revealed

by the dense sampling. Hexadecadienoylcarnitine and tetracosa-

hexaenoic acid (THA) decreased at the beginning of pregnancy,

followed by waves of increased amounts similar to other fatty

acids in the late second and third trimesters (Figure 2D). After

childbirth, the amounts of most long-chain fatty acids decreased,

except for hexadecadienoylcarnitine (Figure 2D).

Within the non-lipid cluster, one sub-cluster included five high-

ly correlated metabolites belonging to the same caffeine meta-

bolism pathway (Figures 2A and S2A). All five metabolites were

consistently elevated during pregnancy, and caffeine reached

a concentration three times higher at the end of pregnancy

than at the beginning (Figure 2E). This elevation might be due

to a slower caffeine metabolism in pregnant women rather than

an increase in coffee intake (Knutti et al., 1981). Overall, among

the 68 top-altered metabolites in pregnancy, functional metabo-

lite groups (e.g., steroids, LysoPCs, fatty acids, and caffeine

metabolites) were altered in an orchestrated manner during

pregnancy, and individual compounds within each group

showed inter-correlation to each other (Figure 2A).

Orchestrated Metabolome Reconfigurations Span
Multiple Pathways during Pregnancy
Next, we longitudinally examined the global pathway changes of

all 687 annotated compounds during normal pregnancy. Among

the 48 mapped Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways, 34 showed significant changes (70.8%,

adjusted FDR < 0.05, global test) (Goeman et al., 2004; Xia and

Wishart, 2010a) through metaboanalystR (Figure 3A) (Chong

et al., 2018), suggesting large-scale pathway changes of meta-

bolism in pregnancy. To quantify the pathway activities through

gestational age, we calculated the average intensity of metabo-

lites in the pathways (Figure 3B; see STARMethods). Among the

top altered pathways (Figure 3A), steroid hormone biosynthesis

showed elevated activity precisely timed to gestation, peaking

before the end of pregnancy and then declining sharply shortly

after delivery (Figure 3B). Along with the essential roles of steroid
hical clustering on the basis of Manhattan distances. The intensities averaged

Cell 181, 1680–1692, June 25, 2020 1683
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Figure 2. Functional Metabolite Groups Altered during Pregnancy

(A) Regularized partial correlation network of top altered compounds in pregnancy. Here, each node represents a compound, and each edge represents the

strength of partial correlation between two compounds after conditioning on all other compounds in the datasets. Edge weights represent the partial correlation

coefficients. Note that the seven nodes with red circles with central positions were also the predictors in the models of Figures 4 and 5.

(B–E) The average levels of the metabolite changes against the gestational progression in the clusters of steroid hormone biosynthesis (B), phospholipids and

DHEA-S (C), long-chain fatty acids (D), and caffeine metabolism (E). The intensities were normalized to the baseline, which was defined by averaging all samples

before 14weeks. The standard errors, derived from 30 subjects, are shown. TheGAswere standardized by scaling delivery events to 40weeks. Abbreviation is as

follows: PP, postpartum. Note that the y axis scale is much larger for steroids than for other compounds.

See also Figure S2.
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Figure 3. System-Wide Reconfiguration of Metabolic Pathways during Pregnancy

(A) Metabolic pathways undergoing significant changes during pregnancy. Red dots denote pregnancy-related pathways with FDR < 0.05, which were further

analyzed in (B). The topological pathway effects were quantified by using published methods (Xia and Wishart, 2010a).

(B) Heatmap shows the temporal changes of pregnancy-related pathway activities during pregnancy and postpartum (PP). To quantify pathway activity, the

average intensity of metabolites in each pathway at each time window was calculated. Note that although some pathways contained mainly the metabolites

increasing or decreasing during pregnancy, many pregnancy-related pathways contained both metabolites increasing and decreasing. Thus, their average

values would not show large changes in the heatmap. For each pathway, the average values from samples earlier than 14 weeks (marked as week 14) were used

as the baseline.

(C) Human disease states that correlated with pregnancy-related metabolites on the basis of published metabolomics data (Chong et al., 2018).

See also Figure S3.
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hormones in maintaining pregnancy and later inducing parturi-

tion (Mendelson, 2009), we observed an orchestrated elevation

of many components centered on progesterone, including

some less well-characterized hormones (Figure S3A). Consistent

with known sources of pregnancy metabolites (e.g., hormones)

(Maltepe and Fisher, 2015), metabolite set enrichment analysis

(MSEA) (Xia and Wishart, 2010b) revealed that the adrenal cor-
tex, gonad, and placenta were among the top origins of preg-

nancy-related metabolites (Figure S3B). The ability to recognize

many well-known and less-characterized steroid hormone

changes across pregnancy validates our approach.

In addition to the steroid pathway, we observed a dynamic

pattern of metabolite changes with pregnancy in other pathways,

such as the arachidonic acid metabolism pathway (Figures 3A,
Cell 181, 1680–1692, June 25, 2020 1685
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3B, and S3C). We observed 20-HETE amounts increased until

week 34; 20-HETE is potentially linked to the regulation of blood

pressure and renal function during pregnancy (Wang et al.,

2002; Wu et al., 2014) (Figures S3C and S3D). By contrast,

5-HETE amounts generally decreased during pregnancy, poten-

tially associated with its regulation of the uterus (Figures S3C

and S3D) (Edwin et al., 1997; Pearson et al., 2010). Thus, beyond

energymetabolismand hormones, a system-wide reconfiguration

of the metabolome occurs as the mother adapts to pregnancy. In

addition, based on MSEA analysis, many pregnancy-related me-

tabolites are implicated in human disease states, including obesity

and prepartum depression (Figure 3C) (Xia and Wishart, 2010b).

The Metabolic Clock of Normal Pregnancy Identified by
Machine Learning
We next determined whether we can build a metabolic clock

based on the high-resolution profile to predict gestational age

for individual plasma samples. In the discovery cohort (samples

n = 507, subjects N = 21), we applied feature selection (lasso

[least absolute shrinkage and selection operator]) with all 9,651

features to build the linear regression model that shows optimal

cross-validation performance for predicting a given phenotype in

this cohort. We then ran the validation cohort data (test set 1,

samples n = 245, subjects N = 9) through the model established

in the discovery cohort to measure the independent perfor-

mance of our model (Figure 4A; see STAR Methods).

We first tested whether the metabolome change can quantita-

tively determine the gestational age in normal pregnant women.

Feature selection in the discovery cohort yielded a linear model

that included 42 metabolic features (Figure S4A; Table S2). In

the cross-validation test of 507 samples in the discovery cohort,

the metabolic model predicted gestational age in weeks

(GAmetabolic) that correlated with gestational age estimated by

the first-trimester ultrasound (GAultrasound, in compliance with

the clinical standard of care) with a Pearson correlation coeffi-

cient (R) of 0.96 (R2 = 0.93, p < 1 X 10�100, root mean squared

error [RMSE]= 2.49) (Figure S4B). In the independent-validation

cohort, the model yielded a similar R of 0.95 (R2 = 0.91, p < 1 X

10�100, RMSE = 2.76, test set 1) (Figure S4C). This indicates

metabolic features can accurately predict the gestational age

on the basis of a blood sample from a pregnant woman.

For potential clinical use, we next tested whether we can use

the annotated compounds in blood to predict the gestational

age in pregnant women. We performed feature selection in dis-

covery cohort by using the 264 level 1 and level 2 compounds

identified in the HumanMetabolome Database (HMDB) in the dis-

covery cohort (Table S3). This yielded a linearmodel including five

compounds (Figures S4D and 4D) that together are highly predic-

tive. We first evaluated the performance of the model in a 10-fold

cross-validation (CV) test in the discovery cohort, in which sam-

ples were distributed into folds by subject instead of by sample

to prevent person-specific information cross-over between the

training folds and the test fold. In the CV test, the metabolic-clock

model produced a result (GAmetabolic) that correlated with the

gestational age estimated by the first-trimester ultrasound

(GAultrasound) with a Pearson correlation coefficient (R) of 0.92

(R2 = 0.85, p = 8e�222, RMSE = 3.67) (Figure 4B). To avoid the

hyperparametric selection bias, we further evaluated the perfor-
1686 Cell 181, 1680–1692, June 25, 2020
mance of our model in two independent validation cohorts (test

set 1 and test set 2). In test set 1, the model yielded an R of

0.89 (R2 = 0.80, p = 8e�93, RMSE = 4.11) (Figure 4C). The model,

including four steroids and one lipid (Figure 4D), was further veri-

fied in a second independent-validation cohort of eight individuals

with R of 0.91 (R2 = 0.83, RMSE = 3.05, samples n = 32, test set 2)

(Table 1; Figure 4E). The compound identifications were

confirmed by chemical standards (Figures 4F–4H, S4E, and

S4F; Table S4; see STAR Methods). We noted that four of these

five compounds are among the central steroid cluster forming a

dense correlation network with one another (Figure 2A).

As pregnancy progresses toward term, clinical classifications

and decisions often need to bemade based on the timing of preg-

nancy (e.g., < 37 weeks for preterm birth). Babies born before

37 weeks are considered preterm, those born before 20 weeks

are considered a miscarriage, and those born before 24 weeks

have low survival. Therefore, for clinical action it is important to

accurately classify the gestational age by clinical cutoff points at

weeks 20–37. As a proof-of-principle, we tested the potential use

of themetabolome data to classify the normal pregnancy samples

as before or after 20, 24, 28, 32, and 37 gestational weeks (Fig-

ure S5A). First, using only samples from the third-trimester (>

28 weeks of gestation), the time window where women were

more susceptible to preterm delivery, we determined whether the

identified maternal blood metabolites can distinguish the sample

gestational age as before or after 37 weeks. Both the discovery

and the validation prediction yielded an area under the receiver

operating characteristics (AUROC) over or close to 0.90 (Fig-

ure S5B; see STAR Methods). Remarkably, the prediction model

contained only three metabolites, and the abundance range of

each individual metabolite separated the > 37 week samples

from the < 37 week samples for all but one to two validation sub-

jects (FiguresS5C–S5F). Similarly, usingsamplesacross thewhole

pregnancy, we found that metabolites can also accurately distin-

guish pregnancy samples before or after other important gesta-

tional age cutoffs, such as 20, 24, 28, and 32 gestational weeks

(Figures S5A and S5G–S5J).

Personal Metabolic Clock of Pregnancy Linked with
Timing of Delivery and Fetal Growth
Next, we examined the metabolic clock prediction performance

in individuals. First, we noted that for most individuals, our model

produced predictions consistently aligned with the gestational

age estimated by the first-trimester ultrasound (Figures 5A and

5B). In both cross validations for Discovery and test set 1, the

prediction deviation (measured by RMSE) in individuals centered

around 3 weeks (Figures S6A and S6B). However, in each data-

set, there is a small population of individuals with higher predic-

tion deviation. When we examined these individuals (e.g.,

subjects 1, 2, and 4), we found the predictions were not more

randomly scattered than other individuals. Rather, in themajority

of them, predictions shifted away from the actual gestational

ages in a portion of the pregnancy duration (Figures 5A and

5B), suggesting effects from non-random causes.

We hypothesized that some of these large prediction deviations

might arise from biological causes, particularly from the maternal-

fetal interaction. It is reported that the fetoplacental unit secretes

hormones in conjunction with fetal growth and development
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Figure 4. Metabolic Clock Of Pregnancy: Five Metabolites Selected by Machine Learning Can Accurately Predict the Timing of Normal

Pregnancy Progression in Both a Discovery and Two Validation Cohorts

(A) Design of the analytical pipeline.

(B and C) Gestational age (GA) predicted by the linear model consisting of five identified metabolites (GAmetabolic, y axis) highly correlates with clinical values

determined by the standard of care (by first-trimester ultrasound [GAultrasound] x axis) in the Discovery (B) and the validation cohort (test set 1) (C). Note that two

samples presented as outliers in the validation cohort, possibly because of occasional mass-spectrometry signal instability in given samples. The 95% confi-

dence interval for the linear regression is represented by the gray area.

(D) Contribution of the five metabolites to the gestational age prediction model.

(E) Gestational age predicted by the five metabolites (GAmetabolic, y axis, scaled) correlates with clinical values determined by the standard of care (by first-

trimester ultrasound [GAultrasound] x axis) in the test set 2 cohort. The 95% confidence interval for the linear regression is represented by the gray area.

(F–H) Confirmation of the metabolites predicting gestational age in the metabolic clock model by standard compounds, THDOC (F), estriol-16-glucuronide (G),

and progesterone (H) (see two additional compounds PE(P-16:0e/0:0) and DHEA-S in Figures S4E and S4F). Measured MS/MS spectral fragmentation profiles

(top, in black) matching chemical standards (bottom, in red). Note that the discovery results were from the 10-fold CV to avoid over-fitting (see STAR Methods).

See also Figures S4 and S5 and Tables S2–S4.
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(Murphy et al., 2006). Indeed, we noted that the average prediction

deviation strongly correlated with adjusted infant birth weight (Fig-

ure 5C, adjusted for gestational length; see Figure S6C and STAR

Methods). Thus, the overall metabolic clock tends to outpace the
gestational age estimation determinedby first-trimester ultrasound

in mothers with a heavier fetus while being delayed in the mothers

with a lighter fetus. The finding suggests that fetal growth appears

to be one of the inputs read by the metabolic clock.
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Figure 5. Personal Metabolic Clock of Pregnancy Linked with Timing of Delivery and Fetal Growth

(A and B) Highly correlated patterns of themetabolic-clock-predicted gestational age (GAmetabolic) of the five-metabolite model with the gestational age estimated

by the first-trimester ultrasound (GAultrasound) at the individual level in the cross validation (A) and test set 1 (B). Note that the outlier sample with negative prediction

value in Figure 4C belonged to the last subject of the test set 1 and did not show in the current plot with the y axis scale limitation.

(C) The average discrepancies between metabolic-clock-predicted gestational age and ultrasound-estimated gestational age (D(GAmetabolic-GAultrasound)) were

significantly correlated with the fetal growth deviation from the population by person. All 29 subjects who had baby birth weight information are included here. The

95% confidence interval for the linear regression is represented by the gray area.

(D) Average discrepancies between GAmetabolic and GAultrasound (D(GAmetabolic-GAultrasound)) were negatively correlated with the actual delivery weeks (by ultra-

sound-estimation). All 18 subjects who had natural labor onset are included here. Dashed lines marked the ultrasound estimated GA at 40 weeks (due date,

black), GAmetabolic one week earlier than the GAultrasound (blue), and GAmetabolic one week later than the GAultrasound (red). The 95% confidence interval for the linear

regression is represented by the gray area.

(E) Summary of prediction models of 2, 4, and 8 weeks approaching delivery, using two to three metabolites. The contribution rank of each predictor in every

model is listed as number 1, 2, and 3. The weeks to delivery were built using samples of the third trimester (> 28 weeks). AUCs in the validation cohort (test set 1)

are listed.

(legend continued on next page)
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In addition, within the 18 women with natural labor onset (i.e.,

excluding women with induction before labor onset and sched-

uled cesarean-section), we found that the women whose overall

metabolic clock of pregnancy outpaced ultrasound evaluation

tended to deliver earlier, whereas a delay in metabolic clock

correlated with a delayed time to child delivery compared to ul-

trasound estimated due date (Figure 5D). Interestingly, five out of

six women (83%) with a metabolic-clock-predicted gestational

age more than one week later than the ultrasound-estimated

gestational age had natural labor onset after their due date (esti-

mated by ultrasound, marked in red in Figure 5D), and four out of

five women (80%) with metabolic-clock-predicted gestational

age more than one week earlier than the ultrasound-estimated

gestational age had natural labor onset before their due date

(marked in blue in Figure 5D). These results suggest the meta-

bolic clock of pregnancy with maternal metabolites contains in-

formation on the timing of delivery in normal pregnancy.

Prediction for Timing of Delivery
We then tested whether the maternal blood metabolites can also

predict the timing of a normal delivery event within a defined period

(2, 4, and8weeks fromdelivery) approaching the laborevents (in the

third trimester). We first examined whether metabolites can predict

a delivery within 2 weeks (weeks to delivery [WD] < 2w). To predict

delivery triggered naturally without outside procedures (such as

scheduled cesarean-section), we only included delivery events

naturally triggered (subjectsN=18, samplesn=193).With just three

metabolites, the metabolome accurately predicted an upcoming

delivery event within 2 weeks in both discovery and validation co-

horts with AUROC close to 0.9 (Figures 5E–5H, S6D, and S6E;

see STAR Methods). Similarly, identified metabolites can also be

used to predict the timing of a normal delivery event within 4 and

8weeks (Figures5EandS6F–S6I). Intriguingly, thepanels ofmetab-

olitespartiallyoverlappedbetween themodels,whereas the individ-

ual metabolites contributed differently to themodels (Figure 5E). All

of the metabolite markers were identified as steroids, except for

phospholipid PE(P-16:0e/0:0), and most of them (three out of five

in total) also appeared in the aforementioned metabolic clock for

gestational age (Figure 5E; Table S4). These results demonstrate

thatwe canprecisely categorize critical pregnancy stages in normal

subjects by using a small number of maternal blood metabolites,

which can be further validated in larger and independent cohorts.

DISCUSSION

In this study, we performed untargeted metabolomics profiling

and identified highly dynamic temporal regulation of metabolic

changes in human pregnancy: more than half of the measured

metabolites and metabolic pathways changed during preg-

nancy. We were able to detect many of the pregnancy-associ-

ated metabolite profiles revealed in previous targeted studies
(F) The logistic regression model based on three metabolites can accurately id

delivery [WD] < 2w; only women with natural labor onset included).

(G) Contribution of the three metabolites to the prediction model of 2 weeks app

(H) Metabolite THDOC showed abundance separations before or after 2 weeks

tabolites in the model. Note that the discovery results were from the 10-fold CV

See also Figure S6 and Table S4.
(Tulchinsky et al., 1972; Wang et al., 2016) (such as progester-

one, 17-hydroxyprogesterone, and the linoleic acid pathway),

validating our approach. At the same time, we also noted that

a large portion of pregnancy-related metabolites identified in

our study was less well-studied. For example, over 95% of the

pregnancy-related metabolites identified in our study were not

recovered from a targeted metabolic profiling study on preg-

nancy (Wang et al., 2016), demonstrating the power of unbiased

and hypothesis-independent profiling. Among the changing me-

tabolites, the major class that increased was steroids, including

progesterone, which interacts with the hypothalamic-pituitary-

adrenal axis (HPA axis) (Chrousos et al., 1998), and estriol-16-

glucuronide produced by the placenta (Levitz et al., 1984).

Here, the detailed differences in their temporal profiles were re-

vealed by the weekly sampling design of the study (Figures 1D

and 2B). In addition, we discovered less well-studied steroids

in pregnancy, such as the neurosteroid THDOC, an allosteric

modulator of the GABAA receptor that potentially affects stress

and depression in human pregnancy (Hosie et al., 2006; Reddy,

2003). Intriguingly, many pregnancy-related metabolites that

changed, including steroids, quickly returned to the maternal

non-pregnant state after childbirth (Figures 1B and 1D and 1E).

In addition, we also identified a wide variety of non-steroid

hormones whose abundance altered during pregnancy

progression.

These metabolite changes presumably accommodate and/or

reflect important maternal biological physiology during preg-

nancy and fetal growth (Bispham et al., 2003; Prentice and Gold-

berg, 2000). For maternal nutrient metabolism, one of the

decreased carnitines, oleoylcarnitine (Figure 1C), accumulates

during certain metabolic conditions, including fasting (Hoppel

and Genuth, 1980; Minkler et al., 2005). Also, one phosphatidyl-

choline that functions as a micronutrient, lecithin, increased in

pregnancy, suggesting a systematic change in the maternal

nutritional status during gestation. Within molecules reflecting

pregnancy-related physiological changes, consistent with

decreased blood pressure (Hermida et al., 1997), the antihyper-

tensive molecule 20-HETE of the arachidonic acid metabolism

pathway is elevated during pregnancy until the early third

trimester, and its synthesis is regulated in a renal-specific

manner (Wang et al., 2002;Wu et al., 2014). This reveals the high-

ly dynamic temporal regulation of 20-HETE in blood pressure

and kidney function during pregnancy. In contrast, compared

with early pregnancy and postpartum, the amount of 5-HETE

in the same pathway was generally lower in the second and third

trimesters with an increasing trend right before the childbirth,

consistent with previous findings that 5-HETE elevates in the

uterus and amniotic fluid at the onset of human labor (Edwin

et al., 1997; Pearson et al., 2010). In the developing fetus,

changes in hexadecadienoylcarnitine amounts are associated

with congenital heart defects (Bahado-Singh et al., 2014).
entify the third-trimester plasma samples approaching the delivery (weeks to

roaching delivery.

approaching the delivery, except in one subject. See Figure S6 for other me-

instead of direct fitting to avoid over-fitting.
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Here, we revealed that the amount of hexadecadienoylcarnitine

in the blood decreased continuously until week 24, then steadily

increased thereafter (Figure 2D). In addition, the amount of long-

chain fatty acids in maternal blood samples is associated with

childhood metabolic health (Maslova et al., 2018). Here, the

omega-3 fatty acid THA decreased during early pregnancy and

gradually increased before childbirth (Figure 2D), suggesting

gestation-related changes in the formation of docosahexaenoic

acid (DHA) (Moore et al., 1995). Our findings are robust even

without a requirement for prior fasting. It will be interesting to

validate these findings in cohorts that have dietary information

and detailed clinical measurements, to define critical ‘‘nutritional

time-zones’’ for micronutrient amounts and further understand

the metabolite changes that are important for physiologic

changes across pregnancy.

Our high-density sampling scheme allowed us to study the tem-

poral alteration of metabolite levels at weekly resolution. For

example, even though many steroid metabolites were elevated

during pregnancy, our profiling was able to show that there were

at least two different behaviors: an early wave (such as progester-

one and 17a-hydroxyprogesterone) and a second wave (such as

estriol-16-glucuronide). These temporal changes of steroids

acrosspregnancyandafterchildbirthareat leastpartially regulated

by the fetoplacental unit, including both maternal adrenal gland

and placenta and fetal adrenals and liver (Diczfalusy, 1953; Frand-

sen and Stakemann, 1961; Raeside, 2017). Further investigation

into the interaction of fetal-maternal contribution will be necessary

for understanding the temporal regulation of these metabolites.

Untargetedmetabolome and high-density sampling enabled us

to identify a broad set of high-resolution temporal profiles of me-

tabolites during pregnancy.We hypothesized that this information

might help us to understand the underlying metabolic clock that

times the progression of pregnancy. We found that solely using

the abundance of five compounds, without any other inputs from

clinical features, we can precisely determine the gestational age

of a healthy pregnant woman. The precision surpasses the recent

cell-free RNA model by using maternal blood (Ngo et al., 2018).

Similarly, with two to three compounds, we can categorically pre-

dict many pregnancy cutoff times with high AUC: we can deter-

mine whether a woman has reached 20, 24, 28, 32, or 37 weeks

(clinical cutoffs formiscarriage, age of viability, extremely preterm,

very preterm, and prematurity, respectively) into her pregnancy

(Figure S5A), or whether a woman will enter into labor within the

next two, four, or eight weeks (Figure 5E). The proof-of-principle

study suggested thatmetabolomebears richquantitative informa-

tion about pregnancy progression. However, our study has its lim-

itations. The studied population consisted of healthy Caucasian

pregnant women with small variations in clinical characteristics.

In the future, we need to test the models in a larger cohort with

diverse ethnicities and complications.Meanwhile, targeted chem-

ical assays need to be developed on the small panels of identified

metabolitemarkers thatwerediscoveredbyuntargetedmetabolo-

mics to measure the metabolite concentration independent of

batches. Intriguingly, we found the metabolic clock of pregnancy

to be robust in general, but small personal deviations can be

observed, most likely affected by the fetal growth (Figure 5C).

Lastly, we also found that the discrepancies between metabolic

timing and ultrasound suggested biological significance: the
1690 Cell 181, 1680–1692, June 25, 2020
women that had advanced metabolic clock tended to deliver

earlier than predicted by ultrasound, whereas a delay inmetabolic

clock correlated with a delayed time to child delivery (Figure 5D).

In summary, combining untargetedmetabolome and high-den-

sitysampling revealed the landscapeofmetabolomechangesdur-

ingpregnancy and the postpartumperiodwithhigh resolution. The

data itself can serve as a resource for future research. As a proof-

of-principle, we also demonstrated that the temporal abundance

information of metabolome can be used to predict gestational

age with high accuracy in a cohort of healthy women. There is a

great need for accurate timing of pregnancy: in the US alone,

900,000 women annually missed their first-trimester ultrasound

(Martin et al., 2018), currently the only accurate timing method

for pregnancy (Committee on Obstetric Practice, the American

Institute of Ultrasound in Medicine, and the Society for Maternal-

FetalMedicine, 2017). In lowandmiddle-incomecountries, acces-

sibility toultrasound isevenmorescarce, complicatingmanypreg-

nancies and fetal care down-stream (e.g., identify imminent labor,

manage complications, etc.). Our study demonstrated that the

development of clinical tools with a few metabolites in maternal

blood to time pregnancy is promising. Testing of blood drawn

from the pregnant woman would likely be limited to once or a

few times to be informative and have the potential to benefit preg-

nant women in both developed and developing worlds.
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Progenesis QI Software Nonlinear Dynamics http://www.nonlinear.com/progenesis/qi/

ProteoWizard version 3.0.19095-

938eda31a

Chambers et al., 2012 http://proteowizard.sourceforge.net

the k-Nearest Neighbor algorithm Altman, 1992 N/A

Forward Dot–Product algorithm Stein and Scott, 1994 N/A

MetDNA Shen et al., 2019 http://metdna.zhulab.cn/

MetaboAnalystR Chong et al., 2018;

Xia and Wishart, 2010a;

Xia and Wishart, 2010b

https://github.com/xia-lab/

MetaboAnalystR

R R Core Team https://www.R-project.org

MS/MS identification pipeline This paper https://jaspershen.github.io/metID/

index.html

Other

Zorbax SB columns (2.1 X 50mm, 1.8

Micron, 600 Bar)

Agilent Technologies 827700-914
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mike

Snyder (mpsnyder@stanford.edu).

Materials Availability
This study did not generate new unique reagents.
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Data and Code Availability
Original data have been deposited to the NIH Common Fund’s National Metabolomics Data Repository (NMDR) website (supported

by NIH grant U2C-DK119886), the Metabolomics Workbench https://www.metabolomicsworkbench.org, Project ID PR000918.

https://doi.org/10.21228/M81H58.

The code for theMS/MS identification pipeline used is available on github at https://jaspershen.github.io/metID/index.html https://

github.com/jaspershen/metID.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Pregnancy cohort
We recruited pregnant women through family doctors and advertisements (Danish IRB number H-3-2014-004). At enrollment, all

women were screened to ensure that they were healthy at baseline, without chronic conditions, and without medication intake of

any kind (ages 23 to 36 at giving birth). From each woman, non-fasting blood samples were collected weekly during pregnancy

and one sample was collected after pregnancy (2x9 mL EDTA tube and 1xPaxGene RNA tube).

METHOD DETAILS

Plasma sample preparation
Within Discovery and Test Set 1 cohorts, 784 normal pregnancy samples from 30 womenwere completely randomized and analyzed

in 12 batches across two years. The 32 normal pregnancy samples in Test Set 2 were randomized and analyzed three years later.

Plasma was prepared from whole blood treated with anti-clot EDTA, aliquoted, and stored at �80�C. Plasma (200 mL) was treated

with four volumes (800 mL) of an acetone:acetonitrile:methanol (1:1:1, v/v) solvent mixture with internal standards (i.e., Acetyl-d3-

carnitine, Phenylalanine-3,3-d2, Tiapride, Trazodone, Reserpine, Phytosphingosine, and Chlorpromazine), mixed for 15 min at

4�C, and incubated at �20�C for 2 h to allow for protein precipitation. The supernatant was collected after centrifugation at

10,000 rpm for 10 min at 4�C and evaporated under nitrogen to dryness (Biotage Turbovap). The dry extracts were reconstituted

with 200 mL 1:1 methanol:water before analysis. A quality control (QC) sample was generated by pooling all the plasma samples

from 10 women and injected between every 10–15 sample injections to monitor the consistency of the retention time and the signal

intensity. The QC sample was also diluted two, four, and eight times to determine the linear-dilution effect of metabolic features.

Chemical materials for untargeted metabolomics
MS-grade water (7732-18-5), methanol (A456-500), acetonitrile (A9554), and acetone (67-64-1) were purchased from Fischer Scien-

tific (Morris Plains, NJ, USA). MS-grade acetic acid (64-19-7) was purchased from Sigma Aldrich (St. Louis, MO, USA). Analytical

grade chemical standards were purchased [Progesterone (Sigma-Aldrich, P-069-1ML), THDOC (Sigma-Aldrich, P2016-5MG), Es-

triol-16-Glucuronide (Sigma-Aldrich, E1877-10MG), DHEA-S (Sigma-Aldrich, Dehydroepiandrosterone-D5-3-sulfate (DHEAS-D5)

(2,2,3,4,4,-D5) sodium salt solution, D-066-1ML), PE(P-16:0e/0:0) (Avanti Polar lipids, 852470), Androstane-3,17-diol (Sigma-Aldrich,

A7755-100MG), 17a-Hydroxyprogesterone (Sigma-Aldrich, H-085-1ML)] and prepared in methanol, except PE(P-16:0e/0:0), which

was prepared in chloroform/methanol (8:2).

MS acquisition
Metabolic extracts were analyzed by reversed-phase liquid chromatographic (RPLC)-mass spectrometry (MS) in both positive and

negative ionization modes. Thermo Q Exactive Hybrid Quadrupole-Orbitrap plus and Q Exactive mass spectrometers (Xcalibur,

Thermo Scientific, San Jose, CA, USA) were operated in full MS-scan mode for data acquisition (acquisition from m/z 500 to

2,000) with a scan rate of approximately 4 Hz and a resolution set at 30,000 (at m/z 400). The MS/MS spectra of the QC sample

were acquired under different fragmentation energy (25 NCE and 50 NCE) of the top 10 parent ions. The resulting mass spectra

were exported into Progenesis QI Software (Nonlinear Dynamics, Durham, NC, USA) for further processing.

Chromatographic conditions
RPLC separation was performed using Zorbax SB columns (2.1 X 50mm, 1.8 Micron, 600 Bar; 827700-914) purchased from Agilent

Technologies (Santa Clara, CA, USA). Mobile phases for RPLC consisted of 0.06% acetic acid in water (phase A) and 0.06% acetic

acid in MeOH (phase B). Metabolites were eluted from the column at a flow rate of 0.6 mL/min, leading to a backpressure of 220–

280 bar at 99% phase A. A linear 1%–80% phase B gradient was applied over 9–10 min. The oven temperature was set to 60�C,
and the sample injection volume was 5 mL.

QUANTIFICATION AND STATISTICAL ANALYSIS

Section 1: Metabolomics Data Processing
Metabolomic features were extracted with a unique mass/charge ratio and retention time, then aligned and quantified with the

Progenesis QI software (Nonlinear Dynamics, Durham, NC, USA, http://www.nonlinear.com/progenesis/qi/). Peak deconvolution
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was performed under default settings in Progenesis QI. Acquired data were processed using an analysis pipeline written in R (https://

www.R-project.org). Progenesis QI output was then processed by removing all metabolites that were quantified in less than 30% of

the samples or had a median intensity of less than twofold signal over the noise threshold (S/N < 2). The noise threshold was esti-

mated by using the median signal across all the blank runs (if no quantitation was reported in any of the blank runs, the feature

was also included in the analysis, as it likely had good S/N characteristics). Then the data were log-transformed and normalized.

For each run, the median of all features was centered to correct for variation in the sample amount. Then for each analyte, a linear

correction was applied per batch to correct for any linear decrease or increase in abundance during the acquisition of a batch. In

short, for each analyte and each batch, a linear model was fitted with the log-abundance of the analyte as the dependent variable

and the acquisition number [run order (randomized)] as the independent variable. The model prediction was interpreted as an under-

lying drift in mass spectrometric sensitivity and subtracted from the analyte level to yield within-batch normalized abundances.

Finally, for each analyte, the abundances were median centered by batch to correct for sensitivity differences between batches.

The positive- and negative-mode features were then concatenated for downstream analysis. In total, 9,651 features were included

in the final analysis. In addition, for samples withmore than 50%of the valuesmissing, the sample was removed (one sample in total).

The remainingmissing valueswere imputed by the nearest 10 neighbors using the k-Nearest Neighbor algorithm (Altman, 1992). Note

that Discovery and Test Set 1 were normalized together, while samples of Test Set 2 were normalized independently.

We applied principal component analysis (PCA) to examine the overall distribution of the sample data (with all 9,651 features) and

check the run quality. The gestational ages (based on first-trimester ultrasound measurements) were superimposed to facilitate the

analysis. During the analysis, the vast majority of the samples were separated by pre- and postpartum in PCA space defined by two

components, which explained the largest variations (PC1 and 2, Figure 1B), while two samples of a same subject (last two in her

collection, before and after childbirth) displayed irregular behavior in PCA and unsupervised clustering analysis. The two samples

were treated as outliers and excluded from further analysis. We also performed partial least-squares discriminant analysis (PLS-

DA) according to the categories of gestational age (by the mixOmics package).

Section 2: Metabolic Features Identification
Metabolite identification was performed using a two-step approach. First, to identify compounds, we used our in-house metabolite

library, which contains chemical standards and a manually curated compound list based on accurate mass (m/z, ± 5 ppm), retention

time and spectral patterns. Second, furthermetabolites were identified based on accuratemass, isotope pattern andMS/MS spectra

against public databases, including HMDB, MoNA, MassBank, METLIN, and NIST.

Specifically, tandemmass spectrometry (MS/MS) data of QC samples were acquired using a Thermo Q Exactive plus mass spec-

trometers. The raw MS data (.raw format) were converted to .mgf format files using ProteoWizard (Chambers et al., 2012) (Version

3.0.19095-938eda31a, http://proteowizard.sourceforge.net). Using themetabolic features table (fromWaters Progenesis QI) andQC

MS/MS data (.mgf format), the metabolic features andMS/MS spectra were matched according to their accurate masses (±25 ppm),

and RT values (±30 s) (Shen et al., 2019). If onemetabolic feature matchedmultipleMS/MS spectra, then all matchedMS/MS spectra

were used for the identification.

Next, the generated MS1/MS2 pairs were automatically searched in the public databases: HMDB (http://www.hmdb.ca/), MoNA

(http://mona.fiehnlab.ucdavis.edu/), and MassBank (http://www.massbank.jp/). The MS/MS spectra similarity score was calculated

using the forward dot-product algorithm (Stein and Scott, 1994), which considers both fragments and intensities. The similarity score

cutoff was set as 0.5.

Furthermore, the metabolic features with MS/MS spectra and not matched in download public databases were searched in the

online public databases, METLIN (https://metlin.scripps.edu) and NIST (https://www.nist.gov/). Then the MS/MS spectra match

was manually checked to confirm the identifications, which was considered a level 2 identification according to MSI (Viant et al.,

2017). In addition, the metabolic peaks with MS/MS spectra that were not matched in public databases were analyzed by MetDNA

(Shen et al., 2019) and given a MSI level 4 identification.

Finally, predictors from the machine-learning models were further confirmed with chemical standards by matching the accurate

masses (±5 ppm), retention time (±30 s), and the MS/MS spectra for a MSI level 1 identification (Viant et al., 2017).

In the rare cases, when a given metabolic feature was matched differently between different matching methods, we choose the

matching based on the identification level: standards > MS/MS > MetDNA.

Section 3: Identify Significantly Altered Features/Compounds
A statistical method specialized formulti-testing, SAM (Significance Analysis ofMicroarrays) (Tusher et al., 2001) was applied to iden-

tify metabolic features/compounds altered significantly in metabolome-wide analysis. Specifically, we used SAM to examine the cor-

relation between abundance of each compounds and the gestational age of each sample in Discovery and Test Set 1 cohorts. For all

SAM analyses, distribution-independent ranking tests (based on the Wilcoxon test) and the sample-wise permutation (default by the

samr package) were used to ascertain significance (false discovery rate, FDR < 0.05). The adjusted gestational ages were included in

a number of plots to present the changes in metabolites among individuals, which were calculated by scaling all delivery event timing

to 40 weeks. The populational baseline was calculated by taking the mean intensity values of all women with samples before 14 (20

out of 30 women).
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To identify top changed compounds with abundance increases or decreases more than 50% during the whole pregnancy

(40 weeks), we performed a linear regression between log2 abundance and the gestational weeks of samples, and only those com-

pounds with absolute slope larger than log2(1.5)/40 weeks = 0.015 were chosen.

Section 4: Regularized Partial Correlation Network
The regularized partial correlation network captures the remaining association between two nodes after controlling all other informa-

tion (indirect correlations) in the network (Epskamp and Fried, 2018). Namely, each node represents a compound, and each edge

represents the strength of partial correlation between two nodes after conditioning on all other variables in the datasets. Edgeweights

represent the partial correlation coefficeients. Lasso (least absolute shrinkage and selection operator) was used to shrink small

association coefficient to zero and thus limit spurious correlations in the network. To perform the lasso-based regularized partial cor-

relation, we used qgraph package in R. The tuning parameter gamma(g), which controls the complexity of the network, was set to 0.5

as suggested (Epskamp and Fried, 2018). Threemeasures, strength (the sumof absolute edgeweight connected to eachmetabolite),

closeness (inverse of the sum of distances from one metabolite to all others), and betweenness (how often one metabolite is in the

shortest paths between other metabolites), indicated how important metabolites are in the network.

Section 5: Pathway Analysis
The compounds identified by the methods mentioned above were pooled together. We utilized MetaboAnalystR (Chong et al., 2018)

(https://github.com/xia-lab/MetaboAnalystR) to perform the metabolite set enrichment analysis (MSEA) (Xia and Wishart, 2010b) as

well as metabolic pathway analysis (MetPA) (Xia and Wishart, 2010a) on all identified metabolites. For the potential location/organ

analysis on metabolites, we excluded male organ/cell types for MSEA. To quantify pathway activity, we averaged the intensities

of all identified metabolites for each pathway that includes no less than three identified metabolites and plotted them on the heatmap

(Figure 3B). The pathway activity before 14 weeks were averaged across all available samples and subtracted from all later time

points. The statistical significance of the changes in a pathway’s activity across pregnancy was evaluated by global testing (Goeman

and Bühlmann, 2007), the default method used by MetaboAnalystR. The topological pathway impacts were quantified using

published method (Xia and Wishart, 2010a), with MetaboAnalystR. Human desease states that correlated with pregnancy-related

metabolites were calculated based on published metabolomics data (Chong et al., 2018).

Section 6: Machine Learning for Pregnancy Timing
Three cohorts of data collected and run at different years but from the same center were used to establish Discovery (subjects N = 21,

samples n = 507), Test Set 1 (subjects N = 9, samples n = 245), and Test Set 2 (subjects N = 8, samples n = 32) datasets, excluding

non-pregnant (postpartum) samples. We applied lasso (R package: glmnet) in the Discovery dataset to select compounds/metabolic

features to build the linear regression model to predict gestational age. A 10-fold cross validation was performed to choose optimal

lambda (penalty for the number of features), which determines the performance of the lassomodel (number of features included in the

model and prediction deviations). For the practical utility of a signature in potential clinical settings, in the identified compound-pre-

diction models, if the number of predictors exceeded five under a given optimal lambda, we increased the lambda value so that the

number of predictors is nomore than five in the final models. We then used two different methods to evaluate the prediction deviation

of our lasso model produced under a given lambda value: 1) A 10-fold cross validation within the Discovery cohort, in which the

optimal lambdawas used (Baumann and Baumann, 2014;Mayr et al., 2018). In the CV, samples were distributed into folds by subject

instead of by samples to prevent person-specific information cross-over between the training folds and the test fold. 2) Validation

tests in the separate Test Set 1 and Test Set 2 cohorts, in which independent subjects were included and samples were analyzed

one year and three years from the Discovery cohort. We built the model using the optimized lambda and full discovery datasets.

This model was applied to the validation cohort for prediction and verification. A linear fitting from the two above evaluations

were performed, between the predicted value and the actual values, with Pearson correlation coefficient (R), R2, and RMSE reported.

The contribution of each predictor (metabolite) in each prediction model is defined by:

Contribution = absðcoefficientiÞ=sumðabsðcoefficientiÞÞ
i: the metabolite included in the linear model

Unlike cross-validation in the discovery dataset, validation tests are not prone to hyperparametric selection bias for lambda value.

Since samples from Test Set 2 cohort were normalized independently from other samples, a scaling was done in the end. Note that

since the sequential nature of the data were not used in the machine-learning methods, other statistical tools, such as recurrent neu-

ral networks (e.g., LSTM (Hochreiter and Schmidhuber, 1997; Mayr et al., 2018)), may be explored to improve the model.

For samples collected after 28 weeks (third-trimester samples), we started with 264 level 1 and 2 compounds, and we used a

similar discovery and validation pipeline described for predicting gestational age (above) to build logistic regression models predict-

ing the categorical labels of gestational age > 32 and 37weeks or delivery within 2, 4, 8 weeks. The predictionmodels for > 20, 24, and

28weekswere built using samples from all three trimesters. For the prediction on delivery within 2, 4, and 8weeks, only the 18women

(out of 30) with natural labor onset were included, excluding subjects with induction before labor onset and scheduled cesarean-sec-

tion (induction by oxytocin/membrane strip after the onset is allowed). To estimate the confidence interval for each AUROC, we per-

formed bootstrapping by person (instead of by samples) for 1000 times, and calculate the 95% confidence interval for AUROC.
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Section 7: Analyze the discrepancies between metabolic clock (GA prediction model) and first-trimester ultrasound
estimations
We evaluated the individual correlation between the predictions made by themetabolic clock and the estimations from first-trimester

ultrasound: We first examined the correlation between metabolic clock predictions and the gestational age based on first-trimester

ultrasound in individual persons. Each correlation was evaluated by Pearson’s correlation. We then performed meta-analysis across

the persons to generate a summary p value, using Fisher’smethod, to describe the overall correlation in each cohort (cross-validation

in the Discovery, Independent validation of Test Set 1).

Previous literature (Donahue et al., 2010) and our own observations suggest that birth weight and gestational length are positively

correlated; later delivery is associated with a heavier absolute birth weight of an infant. To determine whether an infant’s birth weight

falls above or below the group mean, we performed a linear regression between the two parameters and took the residuals to repre-

sent the birth weight deviation adjusted for delivery timing.

AverageD(GAmetabolic- GAultrasound): For each person, at each time point, we examined the differences between themetabolic clock

and first-trimester ultrasound estimation of gestational age. These values were averaged for each person to represent the overall

relative pace of metabolic clock compared to the first-trimester ultrasound estimation. We then examined the correlation between

delivery timing adjusted birth weights and average D(GAmetabolomic- GAultrasound) (Figure 5C).

To examine whether an accelerated metabolic clock (compared to the first-trimester ultrasound estimation) associates with

advanced delivery, we performed the correlation between average D(GAmetabolomic- GAultrasound) and delivery timing, only in women

with a natural labor onset (Figure 5D).
Cell 181, 1680–1692.e1–e5, June 25, 2020 e5



Supplemental Figures

E

F G

Gestational age (weeks)

Lo
g 2(

In
te

ns
ity

)

10

1000

−0.1 0.0
0.1 0.2

Linear fitting slope
ln(Intensity) ~ Gestational age

lo
g 10

(F
re

qu
en

cy
)

14 28 37 40
Gestational age (weeks)

S
u

b
je

ct
s

Postpartum samples

Pregnancy samples

Child birth event

5

A

−30

0

30

60

−60 −30 0 30 60

−30

0

30

60

−60 −30 0 30 60

Batches

Validation

Discovery

PC1 (5.1%) 

P
C

2 
(3

.9
 %

) 

PC1 (5.1%) 

P
C

2 
(3

.9
 %

) 

D

V
ar

ia
nc

es
15

0
25

0
35

0
45

0

1 2 3 4 5 6 7 8 9 10

PLS−DA

−30 0 30

−25

0

25

50

Component 1 (5%)

C
om

po
ne

nt
 2

 (
2%

)

GA:

10−20
20−30
Over 30
PP

Under 10

Component number

B

C

Figure S1. Untargeted Metabolomics for Longitudinal Pregnancy Samples, Related to Figure 1

(A) High-density longitudinal sampling of pregnancies.

(B) The Scree plot of the principal component analysis.

(C) The PLS-DA result according to the categories of gestational age. GA: gestational age; PP: postpartum.

(legend continued on next page)
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(D and E) Principal component analysis based on all 9,651 features shows that the samples do not separate according to the 30 subjects (D) samples from

individual subjects are represented by different colors or experimental batches of Discovery and Validation (Test Set 1) analyzed across two different years (E)

samples of the discovery cohort are presented in red; samples of the validation cohort (Test Set 1) are presented in blue.

(F) Histogram shows the distribution of slopes in the linear fitting model of the 9,651 features (intensities against the gestational ages).

(G) For each of the 30 women, the intensities of an example metabolic feature are shown over the course of gestation, which reveals consistent increases in

abundance according to gestational age among 30 subjects, despite individual differences.
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Figure S2. Functional Metabolite Groups Altered during Pregnancy, Related to Figure 2

(A) Correlation matrix colored by the Pearson correlation coefficient of each pair of pregnancy-related compounds across samples.

(B) The strength, closeness, and betweenness of metabolites in the regularized partial correlation network indicate how important the metabolites are in the

network. Metabolite names are listed on the left side ranked by the closeness, with the names of the seven compounds in the prediction models of Figure 4 and

Figure 5 (bold).
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Figure S3. Pregnancy-Related Metabolic Pathways and Metabolite Origin Analysis, Related to Figure 3

(A) Steroid hormone biosynthesis pathway, with metabolite increases (in red) or decreases (in blue) over the course of gestation.

(B) Numerous metabolites in plasma that were altered during pregnancy can be traced back to organs by metabolite set enrichment analysis (MSEA).

(C) Arachidonic acid metabolism pathway, with metabolite increases (in red) or decreases (in blue) over the course of gestation.

(D) The average levels of the 20-HETE and 5-HETE changes against the gestational progression. The intensities were normalized to the baseline, which was

defined by averaging all samples before 14 weeks. The standard errors, derived from 30 subjects, are shown. The gestational ages were adjusted by scaling

delivery events to 40 weeks. PP, postpartum.
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Figure S4. Metabolites Predict Gestational Age in Machine-Learning Models, Related to Figure 4

(A) Feature selection for predicting gestational age (GA) using metabolomic features.

(B and C) GA predicted by metabolic features (GAmetabolic, y axis) highly correlates with clinical values determined by standard of care (by first-trimester ultra-

sound, GAultrasound, x axis) in the Discovery (B) and the validation cohort (Test Set 1) (C). The 95%confidence interval for the linear regression is represented by the

gray area.

(D) Feature selection for predicting GA using identified metabolites.

(E and F) Measured MS/MS fragmentation profiles (upper) matching of PE(P-16:0e/0:0) (E) and DHEA-S (F) with the MS/MS of standard compounds (lower). GA,

gestational age.
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Figure S5. Metabolites Selected by Machine Learning Can Accurately Predict Gestational Age before or after 20, 24, 28, 32, and 37Weeks in

Both the Discovery and Validation Cohort (Test Set 1), Related to Figure 4

(A) Summary of prediction models of gestational age (GA) before or after 20, 24, 28, 32, and 37 weeks, using two to three metabolites. Note that the prediction

models for 20, 24, and 28 gestational weeks were built using samples from all three trimesters and the ones for late pregnancy (32 and 37weeks) were build using

third-trimester samples. The contribution rank of each predictor in every model is listed as number 1, 2, and 3. Area under the curves (AUCs) in the validation

cohort (Test Set 1) are listed.

(B) The logistic regression model based on three metabolites can accurately distinguish the third-trimester plasma samples before or after 37 weeks.

(C) Contribution of the three metabolites to the prediction model of gestational age before or after 37 weeks.

(D) Estriol-16-Glucuronide shows intensity range separations before and after 37 weeks.

(E and F) THDOC and androstane-3,17-diol show intensity range separations before/after 37 weeks.

(G–J) The logistic regression models can accurately distinguish pregnancy samples before or after 20 (G) 24 (H), and 28 (I) weeks, and the third trimester plasma

samples before or after 32 weeks (J). GA, gestational age.

ll
Resource



Prediction: Weeks to Delivery (WD) < 4w Prediction: Weeks to Delivery (WD) < 8w

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

N= 128
AUC: 0.96 

N= 65
AUC: 0.87

Discovery

Validation

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

N= 128
AUC: 0.90

N= 65
AUC: 0.91 

Discovery

Validation

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

H I

D

lo
g 2(

In
te

ns
ity

)

Subject ID

-1.0

-0.5

0.0

0.5

1.0

100 150 200 250
Mass to charge ratio (m/z)

R
el

at
iv

e 
in

te
ns

ity

-1.0

-0.5

0.0

0.5

1.0

100 200 300
Mass to charge ratio (m/z)

R
el

at
iv

e 
in

te
ns

ity

m/z: 257.226076
RT error (second): 2.4

m/z: 331.226241
RT error (second): 29.4

Standard: Androstane-3,17-diol Standard: 17α-Hydroxyprogesterone

F G

12.0

12.5

13.0

13.5

WD  >  2w

WD < 2w

Androstane-3,17-diol Estriol−16−Glucuronide WD  >  2w

WD < 2w

Subject ID

E

22 28 29 30 25 26 22 28 29 30 25 26

A CB

0

1

2

3

4

5

2 4 6 8 10
Prediction deviation: RMSE

Fr
eq

ue
nc

y

Test Set 1

0.0

2.5

5.0

7.5

10.0

2 4 6 8 10
Prediction deviation: RMSE

Fr
eq

ue
nc

y

Discovery

●●

●●

●

●●

●

●●

●●

●●

●
●

●●

●●

●

●●

●●

●●

●

●

●

●

●●

●

●●

●●

●●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

2500

3000

3500

4000

4500

5000

38 39 40 41 42
Birth gestational age (weeks)

Bi
rth

 w
ei

gh
t (

g)

R2= 0.11

N= 29

95% CI: 0.93-0.99

95% CI: 0.78-0.95

95% CI: 0.84-0.96

95% CI: 0.80-0.97

(legend on next page)

ll
Resource



Figure S6. Identified Compounds Predict Gestational Age and 4 and 8 Weeks Approaching Delivery, Related to Figure 5

(A and B) Histogram shows the distribution of prediction deviation (RMSE) in the cross-validation of the discovery cohort (A) and the validation cohort (B) Test

Set 1.

(C) The baby birth weight shows correlation with the gestational length (gestational age at childbirth). All 29 subjects who had baby birth weight information are

included here. The 95% confidence interval for the linear regression is represented by the gray area.

(D and E) Androstane-3,17-diol (D) and estriol-16-Glucuronide (E) show intensity range separations before or after 2 weeks approaching the delivery.

(F and G) Measured MS/MS fragmentation profiles (upper) matching of androstane-3,17-diol (F) and 17a-hydroxyprogesterone (G) with the MS/MS of standard

compounds (lower).

(H and I) The logistic regressionmodels can accurately identify the third trimester plasma samples approaching delivery (weeks to delivery,WD < 4w (H), WD < 8w

(I); only includes women with natural labor onset). Note that the discovery results were from the 10-fold cross-validation (CV) instead of direct fitting to avoid

over-fitting.
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