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Multi-omics microsampling for the profiling 
of lifestyle-associated changes in health

Xiaotao Shen    1,2,5, Ryan Kellogg1,2,5, Daniel J. Panyard    1,2,5, 
Nasim Bararpour1,2,5, Kevin Erazo Castillo1,2, Brittany Lee-McMullen1,2, 
Alireza Delfarah1,2, Jessalyn Ubellacker1, Sara Ahadi1,2, Yael Rosenberg-Hasson3, 
Ariel Ganz    1,2, Kévin Contrepois1,2, Basil Michael1,2, Ian Simms1,2, 
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Current healthcare practices are reactive and use limited physiological and 
clinical information, often collected months or years apart. Moreover, the 
discovery and profiling of blood biomarkers in clinical and research settings 
are constrained by geographical barriers, the cost and inconvenience 
of in-clinic venepuncture, low sampling frequency and the low depth of 
molecular measurements. Here we describe a strategy for the frequent 
capture and analysis of thousands of metabolites, lipids, cytokines and 
proteins in 10 μl of blood alongside physiological information from wearable 
sensors. We show the advantages of such frequent and dense multi-omics 
microsampling in two applications: the assessment of the reactions to 
a complex mixture of dietary interventions, to discover individualized 
inflammatory and metabolic responses; and deep individualized profiling, to 
reveal large-scale molecular fluctuations as well as thousands of molecular 
relationships associated with intra-day physiological variations (in heart rate, 
for example) and with the levels of clinical biomarkers (specifically, glucose 
and cortisol) and of physical activity. Combining wearables and multi-omics 
microsampling for frequent and scalable omics may facilitate dynamic health 
profiling and biomarker discovery.

Multi-omics technologies enable the quantification of thousands of 
molecules and can provide new insights into the molecular landscape 
of health and disease1,2. Despite major advances in omics technologies, 
the upstream sample collection and processing still requires travel to a 
clinic, access to a phlebotomist and physical and emotional discomfort. 
These current sample-collection strategies do not meet the desired 
flexibility and non-invasiveness to conduct comprehensive longitudi-
nal profiling independent of access to a clinic. Furthermore, the high 
sample volume needed (often 10–50 ml of venous blood) prohibits fre-
quent collections, which precludes high-resolution analysis of dynamic 
metabolic and biological processes that occur on the scale of minutes 

or hours. Finally, high sample collection and processing costs can be 
prohibitive for performing large studies in remote environments.

Previous studies have investigated dried blood spot (DBS) sam-
pling3–6 and volumetric absorptive microsampling (VAMS)7–9 for 
metabolite and protein analyses10. In principle, DBS allows individuals 
to collect a blood drop sample at home and return the sample by mail 
at room temperature. However, DBS sampling is often irreproduc-
ible since volumetric amounts can vary considerably, and, so far, the 
number of analytes analysed from DBS has generally been modest11.

In this Article, to circumvent these challenges, we devised a stream-
lined multi-omics profiling system that uses finger prick blood drop 
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The results revealed that, overall, the majority of analytes were 
quite stable to storage duration, temperature and the interaction effect 
(Fig. 1c,d). Proteins were the most stable (CV range 0.149–1.728, median 
0.397) with few, that is, three (2.3%), eight (6.3%) and six (4.7%), associ-
ated with storage duration, temperature and the interaction effect, 
respectively. Metabolites were less stable (CV range 0.054–54.328, 
median 0.378) with 194 (13.3%), 389 (26.6%) and 193 (13.2%) associ-
ated with storage duration, temperature and the interaction effect, 
respectively. Finally, lipids were the least stable (CV range 0.088–2.218, 
median 0.335), with 150 (19.3%), 513 (66.1%) and 172 (22.1%) associ-
ated with storage duration, temperature and the interaction effect, 
respectively. The relative importance models gave similar results. Thus, 
most analytes can be reliably measured using remote sampling, and 
the less stable ones can be identified and potentially measured using 
correction models.

Comparison between microsample and intravenous plasma 
sample
We next examined the similarity between the molecular profiles derived 
from microsamples of whole blood compared with venepuncture 
plasma. Blood samples were collected from 34 participants using both 
microsampling and conventional intravenous blood draws (Supple-
mentary Fig. 1a and Methods), and metabolomics and lipidomics data 
were acquired from each participant (Supplementary Dataset 2). The 
median intensity of every feature in the 34 participants was calculated 
separately in the two datasets, microsampling and intravenous plasma 
collection samples, and compared via correlation graphs (Fig. 1e). 
Interestingly, the results of the microsampling and intravenous col-
lection methods were quite similar in that the Spearman correlations 
were 0.81 (P < 0.001) and 0.94 (P < 0.001) for 642 metabolites and 616 
lipids, respectively. Metabolites and lipids that were not well correlated 
(Spearman correlation < 0.5) were enriched for amino acids and triglyc-
erides (TAGs), respectively (Supplementary Fig. 1b,c). However, most 
classes of molecules were very similar between the microsampling and 
venous blood draw, including most of the amino acids, carbohydrates, 
free fatty acids (FFAs), TAGs, diglycerides, phosphatidylcholines (PCs) 
and other molecules.

Case studies
As a demonstration of the power of microsampling, we performed two 
case studies while participants were in their native environments. The 
first was to examine the effect of drinking a complex mixture on meta-
bolic profiles. The second was to perform very dense ‘24/7’ profiling 
(98 microsamples) across a period of just longer than 7 days.

Case study 1: metabolic phenotyping responses to Ensure 
shake consumption
Individuals can differ markedly in their metabolic response to food on 
the basis of their epigenome, microbiome, metabolome and other fac-
tors13–16, yet the heterogeneity of this response is not well understood or 
fully established. Determining these differences at an individual level 
is important to optimize diet and lifestyle changes for personalized 
health, weight reduction and/or management of the metabolic dis-
ease. Biomarkers are typically measured at a single timepoint because 
of the difficulty of collecting high-frequency blood samples using a 
conventional blood sampling approach, but the rapid and dynamic 
nature of metabolism in response to food intake requires higher resolu-
tion. To follow the diversity of metabolic responses to complex dietary 
mixtures, we measured the multi-omics responses to a defined mix 
of carbohydrates, lipids, proteins and micronutrients. We analysed 
metabolomics, lipidomics, cytokines and hormones in 28 participants 
with diverse backgrounds (Fig. 2a and Supplementary Fig. 2a) and 
developed six metabolic responses metrics: (1) carbohydrate, (2) lipid, 
(3) amino acid (protein), (4) insulin secretion, (5) FFA (related to insulin 
sensitivity) and (6) immune (cytokines).

collection, minimizes pain and enables sampling frequencies on the 
timescale of minutes without needing clinic access. Our method col-
lects fixed 10 μl volumes and, following extraction, enables the simulta-
neous analysis of proteins, metabolites, lipids and targeted cytokines/
hormones from a single sample enabling broad analyte profiling. In 
two proof-of-principle studies, we first demonstrate the profiling of 
a dynamic response to ingestion of a mixed meal shake and discover 
high heterogeneity in individual metabolic and immune responses, 
and second, we perform high-resolution profiling of an individual over 
1 week enabling the identification and quantification of thousands of 
molecular changes and associations across ‘omes’ at a personal level. 
Our approach is scalable, enabling high-frequency molecular profiling 
for broad utility in research and clinical studies.

Results
Overview of the multi-omics microsampling approach
The blood microsampling and multi-omics data acquisition work-
flow are shown in Fig. 1a. After testing numerous methods, we settled 
on collecting 10 μl blood microsamples using a Mitra device, a solid 
matrix that collects fixed blood volumes. We tested a wide variety of 
extraction conditions and further developed a method for efficiently 
extracting proteins, a broad range of lipids, and metabolites from a 
single microsample using biphasic extraction with methyl tert-butyl 
ether (MTBE). This extraction procedure yields an organic phase con-
taining hydrophobic metabolites and lipids, an aqueous phase con-
taining hydrophilic metabolites and a methanol-precipitated protein 
pellet processed for proteomics data acquisition. Using a separate 
microsample, we performed an aqueous extraction for performing 
multiplexed immunoassays on the Luminex platform (Methods). Omics 
datasets were then processed, annotated and curated for detailed 
omics analysis.

To evaluate the microsampling method, we first examined the 
stability of proteins, metabolites and lipids in microsamples under mul-
tiple conditions, including testing storage duration and temperature 
(Fig. 1b and Extended Data Fig. 1a). We then compared microsampling 
with conventional intravenous sampling methods (Fig. 1b). Finally, two 
pilot case studies were performed to demonstrate how microsampling 
can capture important health and biological perturbations in a lifestyle 
context (Fig. 1b).

Protein, metabolite and lipid stability in microsamples in 
multiple conditions
We first evaluated the stability of proteins, metabolites and lipids in the 
blood microsamples (Supplementary Fig. 1). In brief, blood samples 
were collected from two participants using the 10 μl Mitra devices. 
A total of 36 microsamples were collected from each participant, 
with the microsamples stored in duplicate at three temperatures (4, 
25 and 37 °C) and for five durations at each temperature (3, 6, 24, 72 
and 120 h) before storage at −80 °C until analysis. An additional set 
of samples was immediately stored at −80 °C. Proteomics, metabo-
lomics and lipidomics data were acquired from the microsamples 
(Methods). After quality control (QC), imputation and annotation 
of the data, there were 66 proteomics samples with 128 proteins, 71 
metabolomics samples with 1,461 annotated features and 72 lipidom-
ics samples with 776 lipids (Supplementary Dataset 1). Each omics 
dataset was assessed individually to examine analyte stability con-
cerning storage duration, storage temperature and the interaction 
of storage duration and temperature. The stability metrics assessed 
were (1) the average coefficient of variation (CV) across both partici-
pants’ samples (estimated using the formula for log-scale data12), (2) 
the presence of significant effects of storage conditions on analyte 
level using a linear regression analysis (excluding the baseline samples 
that were not stored at any temperature) and (3) relative importance 
measures (partial R2 and the Lindeman, Merenda and Gold measure,  
LMG1; Methods).
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Thirty-two participants were mailed a kit containing microsa-
mpling Mitra devices, an Ensure shake and careful instructions for 
microsampling sample collection. Each participant collected one 
microsample (defined as 0 min), consumed the Ensure shake and 
collected additional blood microsamples at 30, 60, 120 and 240 min 
after consumption (Fig. 2a). Participants returned their microsamples 
by overnight mail on the same day of microsample collection. The 
microsamples were used for multi-omics data acquisition, namely, 
metabolomics, lipidomics and cytokines/hormones. Four subjects 
without metabolomics data were removed from the dataset (Methods 
and Fig. 2b). After data cleaning, curation and annotation, 768 analytes 
were detected from the microsamples, including 560 metabolites, 
155 lipids and 54 cytokines/hormones for each of the 28 participants 
at each of the five timepoints (a total of 140 data points) (Fig. 2b and 
Supplementary Dataset 3).

Clustering of altered molecules
We first determined whether the microsampled multi-omics data 
reflected the consumption of the Ensure shake. For each timepoint 
post consumption, the Wilcoxon rank test was used to define the signifi-
cantly dysregulated molecules compared with timepoint 0 (baseline). 
Interestingly, the majority of significantly increased metabolites and 
lipids peaked at approximately 60 min and 120 min, respectively, and 
then approached baseline levels by 240 min (Fig. 2c). These results 
indicate that many molecules substantially responded to Ensure shake 
in the blood, and the response kinetics differed on the basis of the 
classes of molecules.

To quantify the molecules that shifted their levels upon Ensure 
shake consumption, an analysis of variance (ANOVA) test was used. The 
results show that the levels of 99 of 560 metabolites (17.7%, permutation 
test P < 0.001), 115 of 155 lipids (74.2%, permutation test P < 0.001) and 
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Fig. 1 | Overview of the microsampling multi-omics workflow and stability 
analysis. a, The samples were collected using microsampling devices, and 
then multi-omics data (proteomics, metabolomics, lipidomics, cytokine and 
so on) were acquired. b, Outline of the primary microsampling analyses. c, The 
coefficient of variation (CV) distribution for proteins, metabolites and lipids 
across all the samples in the stability analysis. d, The percentage of analytes is 

significantly affected by storage duration, temperature and interactions (linear 
regression). The red line shows the expected proportion of nominally significant 
results at the alpha level of 5% (P = 0.05). e, The Spearman correlations between 
microsamples and intravenous blood samples (n = 34) for metabolites and lipids, 
respectively.
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7 of 54 cytokines/hormones (13.0%, permutation test P < 0.001) signifi-
cantly shifted following Ensure shake consumption (Supplementary 
Dataset 4 and Methods). For the metabolites whose levels changed, 
the signals of analytes that differed from baseline were greater than 
those affected by storage duration. These results demonstrate that 
multi-omics analysis from microsamples can be used to measure the 
metabolic response to Ensure shake.

The molecules significantly affected by Ensure shake were then 
clustered using fuzzy c-means clustering to reveal and summarize the 
pattern of changes associated with consumption time (Methods). The 
shifted molecules were grouped into three major clusters across five 
timepoints (Fig. 2d). Cluster 1 contained 39 metabolites, 1 lipid and 4 
cytokines that increased and then decreased with a peak at approxi-
mately 60 min following Ensure shake consumption and then returned 
to baseline by 240 min. Cluster 2 contained 19 metabolites and 106 

lipids that increased more gradually than cluster 1, peaking at approxi-
mately 60–120 min. Molecules in cluster 3 decreased after consuming 
the Ensure shake and then recovered, including 23 metabolites, 8 lipids 
and 3 cytokines (Fig. 2d). These results demonstrate that the molecules 
have different patterns and kinetics of the biochemical responses to 
complex mixture ingestion.

Altered metabolic pathway and physiological responses to 
Ensure shake
We next explored the pathways and physiological responses repre-
sented by the molecules in each cluster (Fig. 2d and Supplementary  
Fig. 2). Cluster 1 primarily comprised metabolites (39 metabolites, 
1 lipid and 4 cytokines) and several biological pathways such as 
aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan 
biosynthesis, and phenylalanine metabolism pathways were evident 
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(Supplementary Fig. 2c). The two major chemical classes captured in 
cluster 1 were amino acids and carbohydrates (Fig. 2d). Both compound 
classes probably come directly from the Ensure shake or are metabo-
lized quickly (Fig. 2e,f). On the other hand, for cluster 3, acetylcarnitine 
was the main metabolite class, which dramatically decreased upon 
Ensure shake consumption and then recovered gradually by 240 min 
(Fig. 2g). This is expected because acetylcarnitine is broken down in 
the blood by plasma esterases to carnitine, and carnitine helps FFAs 
to be transported into the mitochondria for β-oxidation and energy 
production, hence maintaining whole-body energy homeostasis17. 
Consistent with this interpretation, eight FFAs detected in cluster 3 
(Supplementary Fig. 2d) decreased following Ensure shake consump-
tion. Notably, in cluster 2, we found 106 lipid species (Fig. 2d), and 
most of them were TAGs (102 TAGs with 48–52 carbons chains and 1–3 
unsaturations; Supplementary Fig. 2e).

To better understand the molecules in the Ensure shake that might 
be directly detected in the participants’ microsamples, we also analysed 
the composition of the Ensure shake using the same mass spectrometry 
procedure. Nearly 50% of the compounds found in the Ensure shake 
can be detected in the blood, and most of the remainder were of low 
abundance (Supplementary Fig. 2f). Importantly, of 21 high-interest 
metabolites that changed in the blood (Fig. 2e,f,g), 17 are present in 
the Ensure shake. This result demonstrates that the microsampling 
approach is able to detect the ingested molecular signatures from 
blood samples.

It is well known that both connecting peptide (C-peptide) and 
insulin are co-secreted from the pancreas and correlate with increased 
carbohydrates18–20. As expected, C-peptide and insulin were in the 
same cluster with the carbohydrates (cluster 1, Fig. 2h). Moreover, 
we found both gastric inhibitory polypeptide (GIP) and pancreatic 
polypeptide (PP) in the same cluster with insulin (cluster 1) (Fig. 2h, 
left). GIP is an inhibiting hormone of the secretin family of hormones21, 
and its main role is stimulating insulin secretion22. Increased secretion 
of PP is reported to be associated with protein meal consumption, 
fasting, exercise and acute hypoglycemia23. In cluster 3, we found that 
leptin, interferon-γ (IFNG) and interleukin 4 (IL4) decreased quickly 
following Ensure shake consumption (Fig. 2h, right). The primary 
function of leptin is regulating adipose tissue mass through central 
hypothalamus-mediated effects on hunger24; its levels are expected to 
decrease after food consumption. IFNG and IL4 are involved in immune 
responses, including allergies and antibacterial responses. Interest-
ingly, this suggests that the Ensure shake may have anti-inflammatory 
properties. In summary, these results demonstrate that the kinetics 
of the biochemical responses, including hormones, to complex mix-
ture ingestion can be revealed using microsampling (Supplementary 
Dataset 5).

Metabolic phenotyping reveals unique individual responses
How individuals respond to different foods is an area of great interest. 
The Ensure shake is a simple yet complex mixture of many types of 
simple molecules that can be quickly absorbed by the small intestine. 
To examine how different people respond to different metabolites, we 
explored the diversity in the kinetics and magnitude of the molecular 
responses among the different participants. Analysis of the samples 
using a t-distributed stochastic neighbour embedding (tSNE) plot 
shows that the samples were clustered by the participant, indicating 
that each participant had a unique molecular profile and that the dif-
ference between participants was greater than that of the effect of the 
shake (Extended Data Fig. 2a). Nonetheless, a clear timewise separation 
of data points was observed (Extended Data Fig. 2b). Our study sug-
gested that, by 240 min, the metabolic levels tend to return closer to 
their baseline level (Extended Data Fig. 2b). We then used unsupervised 
consensus clustering to cluster participants into different groups. 
Our results suggested that there were two major groups based on the 
molecules altered in response to the shake consumption (Extended 

Data Fig. 2c and Methods). In those two groups, we calculated the level 
of changes in metabolic features, comparing each timepoint with the 
baseline (timepoint 0) for each participant (Methods). This result also 
suggested that participants of those two groups had different responses 
to the Ensure shake (Extended Data Fig. 2d): group 2 responded more 
slowly than the participants in group 1 (Extended Data Fig. 2d), indi-
cating the kinetics of their responses were different. Interestingly, for 
the 13 individuals with a measure of insulin resistance (steady-state 
plasma glucose (SSPG; Methods)), although statistically insignificant, 
we noticed a trend for patients with insulin resistance to be included in 
group 1 over group 2 (Wilcoxon test: P = 0.29, Extended Data Fig. 2e).

Metabolic scores based on the dynamic response to the Ensure 
shake
As individuals are known to vary in their response to different foods, 
and we found heterogeneity in response to the Ensure shake for each 
participant, we next examined the response of each class of mol-
ecules, carbohydrates, lipids, cytokines/hormones and proteins to  
shake ingestion.

We derived a ‘metabolic score’ for the degree of an individual’s 
carbohydrate, lipid, FFA and protein response to the Ensure shake, 
along with insulin secretion and inflammatory response (cytokines) 
(Methods). Briefly, for each molecule in each participant, after the 
Ensure shake consumption, the area under the curve (AUC) was used 
to represent its cumulative value (Fig. 3a). The AUCs of molecules for 
each molecular class (lipids, carbohydrates, amino acids and inflam-
matory molecules) were then used to calculate the response score for 
each participant (Fig. 3b). The final metabolic scores were normalized 
and ranged from 0 to 1, where 0 means the lowest relative metabolic 
level and 1 means the highest relative metabolic level. One participant 
was recognized as an outlier subject and excluded during the score 
calculation (Supplementary Fig. 3 and Methods). For each participant, 
we observed a consistent distribution pattern of the molecular species 
within each metabolic score indicative of similar response patterns to 
Ensure shake consumption. However, those patterns differed greatly 
across subjects demonstrating high inter-individual variability in the 
metabolism of nutrients (Supplementary Figs. 4 and 5a).

The six metabolic scores were calculated for each participant. 
As expected, we found a negative correlation between FFA score and 
SSPG, a marker of insulin resistance25 (Supplementary Fig. 5b). Previ-
ous studies have demonstrated that elevated plasma levels of FFA are 
associated with insulin resistance26. The participants were classified 
into five groups on the basis of their metabolic scores using the hier-
archical clustering method (Fig. 3c). We found that individuals varied 
considerably in their response to the shake for each of the different 
areas; examples selected from each of the five groups are shown in 
Fig. 3d. Within each group, we observed variations in the scores from 
the average score per metabolic class. For example, participant S30 
in group 1 presented lower metabolic scores for fats and amino acids 
compared with the average level of the entire group. In comparison, 
S34 in group 5 showed higher scores for those classes (that is, carbo-
hydrates and amino acids) than the average scores. These differences 
may be due to a variety of underlying mechanisms, including levels of 
digestive enzymes, transporters, hormones (such as incretins) and/
or intestinal microbes required to process particular molecules in 
the Ensure shake. Such underlying causes can be investigated in the 
future through additional analyses (such as metabolic flux analysis). 
Interestingly, S29 and S35 in groups 3 and 5, respectively, had higher 
scores in hormones and cytokines. The latter is particularly interesting 
as some individuals appear to have a strong inflammatory response 
(for example, individual S35), whereas others have a different response 
to appetite-suppressing hormones. Thus, the multi-omics data from 
microsamples reveal the enormous heterogeneity in the biochemical 
responses of each individual to a complex mixture. Such information 
can be defined using microsampling and is important for precision 
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nutrition diets, including inflammatory responses to food. Correlat-
ing these individual responses with medical phenotypes (for example, 
low-density lipoprotein levels and HbA1c levels) will be important for 
personalized nutrition management in the future.

Case study 2: 24/7 personalized whole physiome profiling 
using wearable and multi-omics data
Several studies have demonstrated that longitudinal individualized 
molecular profiles, clinical tests and digital data can monitor health 
and enable early disease detection at an individual level1,27–29. How-
ever, these studies use low-frequency/high-volume blood sampling 
(weekly or monthly, for instance), which does not enable the detec-
tion of detailed patterns such as circadian and many high-resolution 
lifestyle metabolic and other molecular changes. Higher-frequency 
data collection would enable monitoring of health status as well as 
circadian and lifestyle patterns at high resolution in real time, uncover 
relationships between molecules with each other and physiological and 
lifestyle activities and decipher causal associations between them at the  
personal level.

As a proof-of-principle study to determine whether this is feasible, 
we explored the combined use of our microsampling approach and 
wearables to explore the detailed molecular and physiological changes 
that occur in a real-world native context in a single individual. In this 
‘24/7 study’, a single participant collected blood microsamples usually 
every 1–2 h during waking hours over 7 days, with some samplings as 
short as 30 min apart (Fig. 4a and Supplementary Fig. 6a). A total of 
98 samples were collected over 7 days along with wearable data from 
two devices: (1) a smartwatch that recorded heart rate (HR) and step 
count, and (2) a continuous glucose monitor (CGM)30 (Fig. 4a, Sup-
plementary Fig. 6b and Supplementary Dataset 6). Food logging was 
also performed many times each day using an app.

The 98 microsamples were used for in-depth multi-omics profil-
ing, including untargeted proteomics, untargeted metabolomics, 
targeted lipidomics and targeted cytokine, hormone, total protein and 
cortisol assays (Fig. 4b, top). After data acquisition and annotation, 
we detected a total of 2,213 analytes that included 1,051 metabolites, 
811 lipids, 291 proteins, 45 cytokines, 13 metabolic panels (cytokines/
hormones), 1 total protein and 1 cortisol measurement (Fig. 4b, bottom) 
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resulting in a total of 214,661 biochemical measurements in addition 
to wearable physiological data (Supplementary Dataset 7). Overall, 
the prospective collection of internal molecular and wearable data 
resulted in comprehensive, high-frequency and abundant longitudinal 
data on the human whole physiome and lifestyle (Fig. 4b,c and Supple-
mentary Fig. 6b,c), allowing us to explore how the internal molecules 
and physiology change on an hourly scale and their relationships at a 
personal level.

To explore whether multi-omics microsampling captures real 
biological signatures (such as food intake), we selected 2 days on 
which the participants ate high-carbohydrate food (131.8 g) and 
low-carbohydrate food (31.9 g), respectively (Supplementary Fig. 7a). 
Then the two carbohydrate metabolites (fructose and pyruvic acid) in 
microsamples were extracted and analysed, as shown in the box plot in 
Supplementary Fig. 7b. The median values of carbohydrate metabolites 
are 7.8 and 4.7, respectively, demonstrating that the omics data from 
microsamples roughly reflect the concentration of the food type the 
participants consumed.

Wearable and internal multi-omics data reflect the individual 
physiological status
We first explored whether wearable and high-frequency internal 
multi-omics data can monitor and reflect the participant’s health status 
and searched for general patterns in the data. The 2,213 internal molecu-
lar profiles were smoothed (Methods and Supplementary Fig. 7c,d) and 
then grouped into 11 clusters using fuzzy c-means clustering analysis 
(Fig. 4d and Extended Data Fig. 3a). Two clusters followed circadian 
patterns. For example, cluster 4, which is enriched by a high number of 
metabolites (Extended Data Fig. 3b), generally peaked during the day 
time, while cluster 11, which includes mostly lipids (Extended Data Fig. 
3b), peaked primarily at night (Fig. 4d). Other clusters were not neces-
sarily tied to circadian patterns and thus may reflect other events. The 
components of the different clusters were unique, indicating that the 
molecules have different temporal patterns (Extended Data Fig. 3b). 
To obtain tight and distinct molecular modules from each cluster, we 
used the community analysis method31 (Methods and Extended Data 
Fig. 3c–e). Interestingly, obvious peaks were found in some modules 
(Extended Data Fig. 3e,f and Methods), indicating that the molecules 
in modules may be triggered by specific events (Figs. 4d and 5a).

As we have the detailed food (nutrition) and exercise logs, we next 
analysed whether and how molecular fluctuations relate to daily nutri-
tion intake32,33 (Methods). Briefly, nutrients in the food log were classi-
fied into several major classes on the basis of their content level: amino 
acids, vitamins, fat, electrolytes, calories, carbs and fibre. Next, we cal-
culated the association between those classes with internal molecules 
presented by the Jaccard index depicted in the heat map (Extended Data 
Fig. 3g). Interestingly, we captured a high association between classes 
of amino acids and fat with several modules highly enriched in amino 
acids, FFAs and lipids (Extended Data Fig. 3g), consistent with previous 
results34. As with the Ensure shake study, our data revealed molecular 
associations with daily nutrition intake. For example, the participant 
consumed the same meal shake every morning during the study, and we 
captured a clear link between daily shake consumption and temporal 
increase of several compounds such as 1,2,3-benzenetriol sulfate and 
hydroxyphenyllactic acid, which are listed as the shake’s ingredients 
(Fig. 5a, top, and Extended Data Fig. 3h).

Cortisol is believed to follow a circadian pattern, with levels higher 
in the morning that decrease towards the evening35. However, events 
during the day related to stress, activity and diet can impact cortisol 
levels36. Although morning peak levels of cortisol were evident on 
3 days, we observed large day-to-day variations in cortisol patterns, 
demonstrating that within-day cortisol levels may not represent accu-
rate inter-day cortisol patterns for this individual (Fig. 5a). This result 
suggests the importance of high-frequency sampling for monitoring 
health marker status.

Importantly, this study also demonstrates the potential usage of 
microsamples to measure the pharmacokinetics of a drug at an indi-
vidual level. Our participant took a low dose of aspirin in the morning 
for 4 days. Microsampling accurately captured the pharmacokinetics 
of salicylic acid (hydrolysed product of aspirin, Extended Data Fig. 3h) 
and revealed a clearance period of about 24 h in this person, which is 
similar to previous results37 (Fig. 5a, bottom). In addition, we found 
a negative correlation between caffeine and sleep quality (Extended 
Data Fig. 4a,b). This might be expected and has been reported in other 
studies38,39; however, the participant always consumed coffee before 
noon, indicating its long-lasting effect.

Interestingly, our detailed monitoring also revealed an unidenti-
fied inflammatory event in the middle of the week, spanning 3 days, 
with a number of both increased inflammatory cytokines (for example, 
TNFα and CD40L) and as well as several others that decreased (for 
example, eotaxin) (Extended Data Fig. 4c,d). This event was subclini-
cal, as no symptoms were reported, and may represent an asympto-
matic infection or other stress event. Together, these results show the 
power of high-frequency monitoring to record daily measures and 
health-related events not evident to the patient. The latter is particu-
larly important for the early detection of disease40.

Circadian rhythms of internal molecules in human blood
Circadian rhythms are endogenous oscillators in physiological and 
behavioural processes over a 24 h cycle, and they play a critical role in 
human health and diseases41. Circadian molecules participate in diverse 
physiological phenomena such as cell division, energy metabolism and 
blood pressure36,42. These have not been explored at a personal level in 
a real-life setting because of the low frequency and high blood volume 
limitations of traditional blood sampling. Using the high-frequency 
data collected from the microsampling method, we were able to explore 
and evaluate molecules associated with circadian rhythms in the  
human body43.

Each molecule was first searched for those that exhibited a con-
sistent pattern across all 7 days, and we removed those that lacked 
a consistent daily pattern (Methods and Extended Data Fig. 5a). The 
circadian rhythms analysis ( JTK_CYCLE algorithm44) was then used for 
quantitative analysis of all the molecules (Methods). We identified 332 
circadian molecules (Benjamini–Hochberg (BH)-adjusted P values < 
0.05) that show clear circadian patterns (Extended Data Fig. 5b and Sup-
plementary Dataset 8). The circadian molecules were grouped into five 
major clusters using fuzzy c-means clustering (Extended Data Fig. 5c). 
Interestingly, all clusters, except cluster 4 (enriched by protein), were 
dominated by lipids (Extended Data Fig. 5d). We focused on the mol-
ecules that exhibited a complete 1-day cycle (those in clusters 1, 2 and 3; 
Fig. 5b,c) and removed clusters 4 and 5, whose molecules had different 
levels at the beginning and end of the day (Extended Data Fig. 5e,f). 
Cluster 1 was dominated by PC (32.56%) and lysophosphatidylcholine 
(LPC, 25.58%), cluster 2 was dominated by TAGs (93.65%), and cluster 3 
was dominated by both TAGs (49.15%) and phosphatidylethanolamine 
(PE, 22.03%) (Fig. 5d). Examples for each cluster are shown in Fig. 5e.

To explore the in-depth functions of the rhythmic molecules 
in each cluster, we performed lipid enrichment analysis using Lipid 
Mini-on45. LPC, PC, sterol and cholesterol ester (CE) were significantly 
enriched in cluster 1. Previous work has shown that LPC and PC have 
circadian rhythms with peak concentrations in the evening, consistent 
with our result46. For cluster 2, TAG and glycerolipid were significantly 
enriched, and for cluster 3, PE was significantly enriched (Extended 
Data Fig. 6). Thus, the different classes of lipids exhibit distinct circa-
dian patterns. To explore whether the circadian lipids were affected by 
the food intake, we then examined the food logging data. We found that 
the fat nutrition intake differed across 8 days, meaning that the circa-
dian lipids are not driven by the food intake. It is plausible that circadian 
lipids were driven by individual rhymic kinetics or gut microbes. In 
summary, multi-omics analyses from the high-frequency microsamples 
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revealed rhythmic molecules and demonstrated that lipids related to 
energy metabolism have distinct circadian patterns.

Wearable data reflect internal molecular changes
Over the past several years, longitudinal monitoring of physiological 
data has garnered considerable interest30,47–50. However, the ability of 
wearable data to predict clinical labs has been limited30. Several stud-
ies have demonstrated that wearable data can reflect and predict the 
internal molecules (multi-omics data), including laboratory clinic tests 
and metabolites on a weekly or monthly scale29,30. However, due to the 
low-frequency sampling of multi-omics data, the circadian patterns 
and causal relationships between digital and internal molecular data 
cannot be discerned50. We explored the relationship between wearable 
data and internal molecular changes on an hourly scale at an individual 
level, including building predictive models.

Because of the different sampling frequencies of wearable and 
internal multi-omics data, we first attempted to match the wearable and 
internal multi-omics data using different window sizes. The matching 
windows were set as 5, 10, 20, 30, 40, 50, 60, 90 and 120 min. For each 
wearable data type (HR, step count and CGM) in the matched windows, 
a feature engineering pipeline30 was used to convert different data 
types into eight features (for example, the standard deviation (s.d.) 
of heart standard and maximum HR; Methods) resulting in a total of 
24 wearable features. The 24 wearable features were used to predict 
each analyte using the random forest model. Of the 2,223 molecules, 
we found 447 molecules that correlated with wearable features with 
at least one R2 > 0.3 (Supplementary Fig. 8a). Interestingly, we also 
found that most molecules have higher prediction accuracy with the 
larger matching window, consistent with a previous study30. Most of 
the 447 molecules were lipids, and enrichment analysis showed that 
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TAGs were the most predictable by wearable data (Supplementary Fig. 
8b). HR-related features (for example, HR range, HR maximum and HR 
s.d.) contributed the most to the predictive models (Supplementary 
Fig. 8c). Using the random forest model, we then found that several 
cytokines (C-peptide, GIP, insulin and PP) could also be predicted by 
wearable data. The most contributed wearable features were CGM 
and HR-related features (Supplementary Fig. 8d). All those results 
demonstrate that wearable data could predict our high-frequency 
multi-omics data from microsamples.

Biochemical changes in the body can occur on the order of min-
utes and hours51, and thus low-frequency multi-omics data (weekly or 
monthly) can find some associations with physiological measurements 
but not causal relationships29,30. Using the high-frequency microsa-
mpling approach, we next explored whether we could deduce the 
potential causal relationships between wearable data and internal 
molecules through temporal relationships; causal events are expected 
to precede downstream effects52. We first matched each wearable data 
point and molecule with different lagged times. Then, the Spearman 
correlation and P value were calculated for matching time-series data. 
Only the correlations with similar shapes and lagged time were scored 
as significant lagged correlations (Methods). To enable this analysis, 
the laggedCor (lagged correlation) algorithm was developed as an 
R package (https://jaspershen.github.io/laggedcor/). We then used 
this algorithm to demonstrate that we could capture and quantify the 
known lagged correlation and causal relationships between step count 
and HR. Interestingly, we found a lagged correlation of 0.6 (BH-adjusted 
P value < 0.0001) with a shift time of −1 min (step count − HR, Supple-
mentary Fig. 9a), which means that 1 min after the step count increases, 
the HR begins to increase. This expected result demonstrates that our 
lagged correlation algorithm can capture and quantify potential causal 
relationships. Next, a lagged correlation network between wearable 
and internal molecular data was generated (Extended Data Fig. 7a 

and Supplementary Fig. 9b), including 1,217 nodes (3 wearable data 
points and 1,214 molecules) and 1,895 edges (Extended Data Fig. 7b 
and Supplementary Dataset 9), demonstrating a high degree of asso-
ciation between wearable and multi-omics data. An example with the 
top 100 edges for each pair of wearable and omics data is provided in 
Extended Data Fig. 7a. Step count and HR have most of the edges (57.3% 
and 42.6%, respectively) in the lagged correlation network (Extended 
Data Fig. 7b). We also found that CGM correlates more with cytokines 
than HR and step count (Supplementary Fig. 9c), indicating that glu-
cose levels strongly correlate with immune responses. This result has 
been demonstrated by other studies53. In addition, we also observed 
that step count and HR have many (669) overlapping correlations 
(Supplementary Fig. 9d), as expected since they have a significant  
positive correlation.

Interestingly, the immunity-related pathways contained some 
proteins that negatively correlated with CGM, which was not expected 
(Supplementary Fig. 9e). This demonstrates the importance of fol-
lowing these responses at the individual level. As expected, we also 
found that glucagon signalling, oxidative phosphorylation pathways 
and FFAs positively correlate with CGM (Supplementary Fig. 9f,g). 
Glucagon breakdown can raise the concentration of glucose and fatty 
acids in the bloodstream, and oxidative phosphorylation can oxi-
dize nutrients to release chemical energy. We found that the caffeine 
metabolism pathway positively correlates with HR (Supplementary Fig. 
9h), consistent with previous studies54. We also found that the blood 
coagulation pathway positively correlates with HR (Supplementary 
14i), and the neutrophil degranulation pathway negatively correlates 
with HR (Supplementary Fig. 9j). To the best of our knowledge, these 
associations provide new biological insights that should be validated in 
future studies. Overview, these results demonstrate that the wearable 
data can reflect the physiological status of the participant and reveal 
useful insights at a personal level.
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Fig. 6 | CGM and internal molecule causal association network. a, The CGM glucose subnetwork from the whole network. b, Three examples are shown to represent 
the causal relationships between CGM glucose and internal molecules. NS, not significant.
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We extracted the CGM glucose subnetwork from the entire lagged 
correlation network to further explore how glucose associates with 
internal molecules (Fig. 6a). We observed that CGM glucose has a 
significant lagged correlation with α-synuclein (lagged correlation: 
0.36, BH-adjusted P value < 0.05) (Fig. 6b), and the shift time is −55 min 
(α-synuclein − CGM), indicating that α-synuclein may directly or indi-
rectly upregulate glucose levels in the blood. This result has been demon-
strated by previous studies55,56. Previous studies have shown that higher 
C-peptide levels correlate with increased CGM glucose values57. Our data 
found that CGM glucose significantly lagged correlations with C-peptide 
(Fig. 6b and Supplementary Fig. 10a) and insulin (Supplementary Fig. 
10b). The shift time between CGM and C-peptide in this individual is 
10 min (lagged correlation 0.36, BH-adjusted P values < 0.05), which 
means that CGM glucose precedes the concentration of C-peptide in 
blood by 10 min. We also observed that CGM significantly correlates with 
several cytokines, including TNF-β (Fig. 6b), FLT3L, IL15, IP10 and TNF-α 
(Supplementary Fig. 10c; time shift 0 min to 15 min), and four of them 
are pro-inflammatory cytokines. These results indicate that glucose can 
cause a rapid and specific pro-inflammatory response. In summary, our 
results show that, on the basis of the high-frequency multi-omics data 
from microsamples, we find potential causal associations between wear-
able and multi-omics data. The potential causal relationships we found 
using the laggedCor algorithm can be validated by future experiments.

Discussion
Current healthcare practices are reactive and based on limited physi-
ological and/or clinical information, often collected months or years 
apart. In this study, we built a multi-omics microsampling approach 
that enables the measurement of thousands of metabolites, lipids, 
cytokines and proteins in frequently collected 10 μl blood samples. 
We demonstrated that many of the molecules from the microsam-
ples (VAMS) are stable and reliable. In addition, most of the molecules 
from the microsampling are consistent with the classic blood sampling 
approach (Spearman correlation 0.8–0.9). Compared with DBS, VAMS 
can achieve good analytical performance for targeted compound and 
protein analysis58,59. However, for DBS, the haematocrit effect affects 
the resulting spot size, which can introduce variation in analysis. As the 
microsampling approach is less invasive and can be used remotely and 
without specific training, it enables high-frequency blood sample col-
lection (approximately hourly) in a native setting, which is difficult to 
perform using the classic blood sampling approach. On the basis of the 
multi-omics microsampling workflow, we carried out two case studies 
to demonstrate the dense in situ samplings, and analytic capabilities 
to (1) perform dynamic and individualized metabolic assessments 
after response to dietary (Ensure shake) intervention and (2) reveal 
large-scale intra-day molecular fluctuations as well as thousands of 
molecular associations including those associated with intra-day vari-
ation in HR, glucose levels and activity.

It is worth noting that most analytes that we measure, particu-
larly proteins, appear stable with regard to time, temperature and the 
combination of both. We also note that, since we tested for significant 
effects of storage conditions with a relatively low sample size, we do not 
rule out additional effects that may not have been observed here due 
to power challenges, which was evident from a sensitivity regression 
analysis that analysed only one storage condition at a time (storage 
duration and storage temperature), and additional effects for storage 
duration were identified when the baseline samples were added to the 
analysis. For those molecules that are not stable, they can either be 
discarded from the analyses or quantification can be ascertained from 
unique degradation products. Alternatively, sample collection pro-
cedures could include rapid and cold shipping to minimize potential 
issues with less stable molecules. Indeed, we found that most samples 
can be collected and stored within 24 h, thus minimizing degradation. 
Larger stability studies, especially in larger and more diverse popula-
tions, will help identify other potential issues. Regardless, reliable 

measurements can be made for thousands of molecules, including 
those present at very low abundance (such as cytokines).

In summary, the presented methodology achieves fully remote, 
scalable, high-temporal-resolution omics and sensor monitoring. It has 
the potential for large-scale comprehensive, dynamic molecular and 
digital biomarker discovery and monitoring as well as health profiling. 
Here we used two case studies to show the potential of multi-omics 
microsampling in precision medicine. Many other applications can be 
envisioned. Examples include: (1) Longitudinal biomarker discovery. 
The multi-omics microsampling is simple and unpainful compared 
with the traditional blood collection method and thus enables anyone 
to self-collect high-frequent and high-quality blood microsamples 
anywhere for longitudinal biomarker discovery. (2) Personalized health 
monitoring. People can collect blood samples at home without any help 
and then send the samples to the laboratory for data acquisition and 
analysis. If a notable abnormality is detected, the result is sent imme-
diately to a physician. The physician would then be able to validate 
the results and respond quickly with an intervention. (3) Therapeutic 
drug monitoring. Patients could collect microsamples frequently and 
remotely to monitor the drug-related compounds or biomarkers in the 
blood at a known time, to guide dosage, and result in optimized therapy. 
In our study, all the microsamples were prepared and run together as a 
batch to avoid batch effects. In the future, the microsamples collected 
in 1 day could be prepared and run in 1 day after sample collection. The 
users can receive their results within 2 days after sending their samples 
to the laboratory for analysis. Additionally, developing a clinical diag-
nostic based on microsampling requires additional validation steps for 
accuracy, precision, matrix effects and so on, and the use of standards 
such as isotopically labelled reference molecules. In addition, pres-
ently, only proteins, metabolites, lipids and cytokines were measured 
using our microsampling approach, but other types of molecules can 
be measured, such as DNA, epigenomes and RNA. For the 24/7 study, 
as a pilot study, only one participant was recruited to demonstrate the 
power of following personalized responses. Enlargement of the cohort 
size will enable the measurement of more generalized patterns but 
will also reveal new challenges in the processing and analysis of large 
numbers of samples. Indeed, our simple studies generated 98 data 
points in a single individual.

The two pilot case studies (group study and individual study) 
were used to demonstrate the power and application of the approach. 
The molecular signatures found in our study provide vast testable 
hypotheses that should be validated using analytical and experimen-
tal approaches. We note that group analysis is usually performed to 
find the overall trend. However, it can be potentially used to identify 
individual outliers who may have underlying conditions1. When an 
individual profile differs greatly from the average, one needs to first 
check for sample mix-ups, systematic variation and batch effects. 
Once normalized, data outlier detection can be further performed. 
Individuals who fall outside the overall pattern can be investigated 
for underlying causes for their molecular shift (medical conditions, 
medications or lifestyle abnormalities). In addition, the confounders 
(such as sex, age and body mass index (BMI)) must be controlled and 
adjusted to find the real and expected biological variation. Similarly, 
we note that, when an individual profile differs greatly from the aver-
age, overview conclusions from the whole cohort may not extend to 
individuals33,60. For the personalized analysis, the conclusion from the 
individual may not extend to the group or other individuals60, which 
can be revealed using our approach. Overall, we believe the multi-omics 
microsampling approach offers a promising opportunity to integrate 
with wearable data to improve precision healthcare.

Methods
Microsampling blood sample collection
The Mitra device (Neoteryx) is used to collect the microsampling blood 
samples. The blood microsampling method and multi-omics data 
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acquisition workflow were established first (Fig. 1a). We developed 
a method for extracting proteins, lipids and metabolites from single 
microsamples, using biphasic extraction using MTBE. This extrac-
tion yields an organic phase processed for lipids, an aqueous phase 
processed for metabolites and a protein pellet processed for prot-
eomics. Using a separate microsample, we performed an aqueous 
extraction for performing multiplexed immunoassays on the Luminex  
platform (Fig. 1a).

Intravenous blood sample collection
Intravenous blood from the upper forearm was drawn from 
overnight-fasted participants. Specimens were immediately placed on 
ice after collection to avoid sample deterioration. Blood was collected 
in a purple top tube vacutainer (BD), layered onto Ficoll media (Thermo 
Fisher Scientific), and spun at 2,000 r.p.m. for 25 min at 24 °C. The 
top-layer EDTA–plasma was pipetted off, aliquoted, and immediately 
frozen at -80 °C. The peripheral blood mononuclear cell (PBMC) layer 
was collected and counted via the cell counter, and aliquots of PBMCs 
were further pelleted and flash frozen.

Microsampling blood sample preparation
Mitra tip samples were thawed on ice, prepared and analysed ran-
domly. Briefly, 300 μl of methanol spiked in with internal standards 
(provided with the Lipidyzer platform) was added to a Mitra tip and 
vortexed for 20 s. Lipids were solubilized by adding 1,000 μl of MTBE 
and incubated under agitation for 30 min at 4 °C. Phase separation 
was induced by the addition of 250 μl of ice-cold water. Samples were 
vortexed for 1 min and centrifuged at 14,000g for 5 min at 20 °C. The 
upper phase containing the lipids was then collected, dried down 
under nitrogen, reconstituted with 200 μl of methanol, and stored at 
−20 °C. After biphasic extraction, the Mitra tips were resuspended in 
0.1 M Tris pH 8.6 buffer, along with 10% N-octyl-glucoside and 50 mM 
Tris(2-carboxyethyl)phosphine, followed by shaking at 60 °C for 1 h 
(denaturation, solubilization and reduction). The protein mixture 
was subsequently alkylated with 200 mM indole-3-acetic acid and 
incubated at room temperature (24 °C) in the dark for 30 min. Proteins 
were digested with trypsin overnight at 37 °C and quenched the follow-
ing day with 10% (v/v) formic acid the following day. Three-hundred 
microlitres of metabolite layer was transferred, and then supplemented 
with 1,200 μl ice-cold MeOH:acetone:ACN (1:1:1) and vortexed for 10 s. 
The sample was incubated overnight at −20 °C. The samples were vor-
texed for 10 s, then centrifuged at 20,000g for 10 min at 4 °C. Then the 
sample was transferred to a new 2.0 ml tube and dried down. Finally, 
the samples were stored at −20 °C until data acquisition.

Intravenous blood sample preparation
The sample preparation of venous blood samples for omics data acqui-
sition is documented by our previous studies1,2,29.

Data acquisition of untargeted proteomics
Approximately 8 μg of tryptic digest were separated on a NanoLC 425 
System (Sciex). A flow of 5 μl min−1 was used with trap-elute setting 
using a ChromXP C18 trap column 0.5 × 10 mm, 5 μm, 120 Å (catalogue 
number 5028898, Sciex). Tryptic peptides were eluted from a ChromXP 
C18 column 0.3 × 150 mm, 3 μm, 120 Å (catalogue number 5022436, 
Sciex) using a 43 min gradient from 4% to 32% B with 1 h total run. Mobile 
phase solvents consisted of 92.9% water, 2% acetonitrile, 5% dimethyl 
sulfoxide and 0.1% formic acid (A phase) and 92.9% acetonitrile, 2% 
water, 5% dimethyl sulfoxide and 0.1% formic acid (B phase). Mass spec-
trometry analysis was performed using Sequential Window Acquisition 
of all Theoretical (SWATH) acquisitions on a TripleTOF 6600 System 
equipped with a DuoSpray Source and 25 mm inner diameter electrode 
(Sciex). Variable Q1 window SWATH acquisition methods (100 windows) 
were built-in high-sensitivity tandem mass spectrometry mode with 
Analyst TF Software (v1.7).

Data processing of untargeted proteomics
The spectra were analysed with OpenSWATH using an in-house spec-
tral library made from plasma and PBMC samples. Peak groups were 
then statistically scored with the PyProphet tool (v2.0.1), and all runs 
were aligned using the TRIC strategy. A final data matrix was pro-
duced with 1% false discovery rate (FDR) at the peptide level and 5% 
FDR at the protein level. Several QC steps were then applied to the 
output from SWATH2STATS. The correlation of peptide intensities 
between samples was calculated, and two samples with a mean sample 
correlation less than 2 s.d. from the mean sample correlation were 
removed. An additional sample with a peptide count less than 3 s.d. 
below the mean was removed. Poorly identified proteins and peptides 
were removed according to their m-scores using a target FDR of 0.05 
(m-score threshold 8.91 × 10−12). Peptides matched to an unknown 
protein, non-proteotypic peptides and peptides beyond the ten most 
intense peptides for a given protein were all removed. Protein intensi-
ties were then calculated by first summing the intensities of all transi-
tions mapped to each peptide and then all peptides mapped to each 
protein. Proteins that were missing for > 50% of samples were removed, 
as were proteins whose CV among a separate set of three QC samples 
was greater than 50%. Each missing protein value was imputed using 
k-nearest neighbours (KNN; k = 10; using only non-imputed data; R 
package VIM, version 6.1.0). Protein values were then log2 transformed.

Data acquisition of untargeted metabolomics
Prepared samples were analysed four times using hydrophilic interac-
tion liquid chromatography (HILIC) and reverse phase liquid chroma-
tography (RPLC) separation in both positive and negative ionization 
modes, respectively. Data were acquired on a Q Exactive Plus mass 
spectrometer for HILIC and a Q Exactive mass spectrometer for RPLC 
(Thermo Fisher Scientific). Both instruments were equipped with an 
HESI-II probe and operated in full mass spectrometry scan mode. Tan-
dem mass spectrometry data were acquired on QC samples consisting 
of an equimolar mixture of all samples in the study. HILIC experiments 
were performed using a ZIC-HILIC column 2.1 × 100 mm, 3.5 μm, 200 Å 
(catalogue number 1504470001, Millipore) and mobile phase solvents 
consisting of 10 mM ammonium acetate in 50/50 acetonitrile/water 
(A phase) and 10 mM ammonium acetate in 95/5 acetonitrile/water (B 
phase). RPLC experiments were performed using a Zorbax SBaq column 
2.1 × 50 mm, 1.7 μm, 100 Å (catalogue number 827700-914, Agilent 
Technologies) and mobile phase solvents consisting of 0.06% acetic 
acid in water (A phase) and 0.06% acetic acid in methanol (B phase).

Data processing of untargeted metabolomics
Data from each mode were independently analysed using Progenesis QI 
software (v2.3, Nonlinear Dynamics). Metabolic features from blanks 
that did not show sufficient linearity upon dilution in QC samples 
(r < 0.6) were discarded. To reduce metabolic features of the metabo-
lome profile, only metabolic features present in > 2/3 of the samples 
were kept for further analysis. Next, in the study samples, metabolic 
features present in > 50% of those samples were kept for further analy-
sis. Missing values were imputed using KNN with k = 10. Data were then 
log2 transformed. The batch effect was evaluated using the dbnorm 
package61. Applying several batch removal algorithms, the ComBat 
model62, giving the best performance, was considered for correcting 
systematic variation associated with the batch. Data from each mode 
were independently analysed using Progenesis QI software. ComBat 
was used to do data normalization61, and KNN was used for missing 
value imputation. Data from each mode were merged, and metabolites 
were formally identified by matching fragmentation spectra and reten-
tion time to analytical-grade standards when possible or by matching 
experimental tandem mass spectrometry to fragmentation spectra in 
publicly available databases using metID63. We used the Metabolomics 
Standards Initiative64 level of confidence to grade metabolite annota-
tion confidence (levels 1 and 2).
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Data acquisition of semi-targeted lipidomics
Prepared samples were analysed using the Lipidyzer platform that 
comprises a 5500 QTRAP System equipped with a SelexION differen-
tial mobility spectrometry interface (Sciex) and a high-flow LC-30AD 
solvent delivery unit (Shimadzu). The detailed method can be found 
in our previous study65. In brief, lipid molecular species were identi-
fied and quantified using multiple reaction monitoring (MRM) and 
positive/negative ionization switching. Two acquisition methods were 
employed, covering ten lipid classes; method 1 had SelexION voltages 
turned on, while method 2 had SelexION voltages turned off. Lipidyzer 
data were reported by the Lipidomics Workflow Manager software, 
which calculates concentrations for each detected lipid as the average 
intensity of the analyte MRM/average intensity of the most structurally 
similar internal standard MRM multiplied by its concentration.

Data processing of semi-targeted lipidomics
The final datasets were generated from the Lipidyzer platform, and the 
lipid abundances were reported as concentrations in nmol g−1. Lipids 
detected in less than 2/3 of the samples were discarded, and missing 
values were imputed on the basis of a lipid class-wise KNN-TN (KNN 
truncation) imputation method66.

Cytokines and metabolic panel. Cytokines were analysed using the 
HCYTMAG-60K-PX41 kit or the HSTCMAG28SPMX13 kit. For metabolic 
hormone assays, the catalogue number was HMHEMAG-34K. These 
assays were performed by the Human Immune Monitoring Center 
at Stanford University. All kits were purchased from EMD Millipore 
Corporation and used according to the manufacturer’s instructions 
with the following modifications. Briefly, samples were mixed with 
antibody-linked magnetic beads on a 96-well plate and incubated 
overnight at 4 °C with shaking. Cold (4 °C) and room-temperature incu-
bation steps were performed on an orbital shaker at 500–600 r.p.m. 
Plates were washed twice with wash buffer in a Biotek ELx405 washer. 
Following 1 h of incubation at room temperature with a biotinylated 
detection antibody, streptavidin–PE was added for 30 min with shak-
ing. Plates were washed as described, and phosphate-buffered saline 
was added to wells for reading in the Luminex FlexMap3D Instrument 
(Thermo Fisher Scientific) with a lower bound of 50 beads per sample 
per cytokine. Each sample was measured in a singlet. Custom Assay 
Chex control beads were purchased from Radix BioSolutions and 
added to all wells.

Cortisol. This assay was performed by the Human Immune Monitor-
ing Center at Stanford University using the ProcartaPlex Simplex Kit 
(catalogue number EPX010-12190-901, Thermo Fisher Scientific) and 
used according to the manufacturer’s instructions with modifications 
as described. Briefly: Beads were added to a 96-well plate and washed 
in a BioTek ELx405 washer. Samples were added to the plate containing 
the mixed antibody-linked beads, and 20 μl of the competitive conju-
gate was added and incubated overnight at 4 °C with shaking. Cold 
(4 °C) and room-temperature incubation steps were performed on an 
orbital shaker at 500–600 r.p.m. Following overnight incubation, the 
plate was washed as described, and PE was added for 30 min at room 
temperature. The plate was washed as above, and a reading buffer was 
added to the wells. Each sample was measured in a single well. Plates 
were read using a Luminex FM3D FlexMap instrument with a lower 
bound of 50 beads per sample per cytokine. Custom Assay Chex control 
beads (Radix BioSolutions) were added to all wells.

Total protein. Total protein was determined by bicinchoninic acid assay 
according to kit instructions (Thermo Fisher Scientific).

Wearable data. The smartwatch (Fitbit Ionic) was used to collect the 
sleep, HR and step count data. The Fitbit Intraday API through the My 
Personal Health Dashboard app67 was used to retrieve sleep, HR and 

step count data for the experiment period. The Dexcom G5 device was 
used to collect the CGM data. CGM data were transferred directly from 
the G5 device51. Dietary intake was logged manually using a notebook 
to track approximate meal timing and composition.

Study design of stability analysis
All the microsamples were stored at −80 °C before they were prepared 
and analysed. The stability analysis was designed to explore whether 
the molecules from the microsamples are stable in different storage 
conditions (temperature and duration time) before they are stored at 
−80 °C. Two individuals were enroled under the institutional review 
board (IRB)-approved protocol (IRB-23602 at Stanford University) 
with written consent. By venepuncture, two individuals were asked to 
provide 10 ml of whole blood (in an EDTA purple top tube). The whole 
blood of each participant was poured into separate plastic reservoirs. 
Then 10 μl Mitra devices were touched to the surface of the blood to fill 
the microsample sponge. Thirty-six microsamples were generated for 
each participant, and microsamples were stored in duplicate at three 
temperatures (4, 25 and 37 °C) for six durations at the given tempera-
ture (3, 6, 24, 72, 120 and 0 h (that is, put into cold storage immediately)) 
before being stored at −80 °C until analysis. Then all the microsamples 
were prepared and used to acquire proteomics, metabolomics and 
lipidomics data using the protocol described above. All the omics data 
were provided as Supplementary Dataset 1.

The first metric of stability
After the data generation, annotation, cleaning, imputation and trans-
formations, each of the omic datasets (proteins, metabolite features 
and lipids) were assessed for analyte stability in storage. A total of 128 
proteins (n = 66 samples), 1,461 metabolites (no redundant metabolite 
removal, n = 71 samples) and 776 lipids (n = 72 samples) were available 
for the stability analysis. The first metric assessed was the CV (estimated 
using the formula for log-transformed data12), which was calculated 
separately across all of the samples for each of the two participants 
from whom samples were taken. The mean of the two CVs (one from 
each participant’s samples) was used as the CV for that analyte. The 
distribution of CVs was plotted.

The second metric of stability
The second stability metric was used to identify storage conditions’ 
significant effects on the analyte level. Linear regression was performed 
for each analyte where the analyte level was regressed on storage dura-
tion, temperature, the duration × temperature interaction effect, and 
an indicator for one of the two participants (to remove the effect of 
the actual difference in analyte level between the participants). As the 
samples that had 0 storage duration were never stored at any tempera-
ture, those samples were excluded from the analysis so that the effect 
of storage temperature could still be estimated, leaving 54, 59 and 60 
samples for the protein, metabolite and lipid analyses, respectively. The 
‘lm’ function in R was used, and since the objective of the study was to 
identify analytes that were stable under storage, a simple significance 
threshold of P = 0.05 was used to be more conservative since smaller 
P-value thresholds would exclude subtler potential effects of storage. 
The total model R2 and the partial R2 for each regression term were 
calculated using the ‘rsq’ and ‘rsq.partial’ functions of the ‘rsq’ pack-
age (version 2.2). The LMG measure of variable importance1 was also 
calculated using the ‘calc.relimp’ function of the ‘relaimpo’ package 
(version 2.2-6). The proportion of statistically significant effects of 
storage conditions on analyte level was evaluated against the expected 
number of significant results at the alpha level of 0.05 to gauge the 
extent of signal for significant storage effects on the analytes. For each 
omic dataset and storage condition term, the top most associated 
analytes (according to P value) were plotted over time and coloured 
by storage temperature to visually examine the identified effects. As a 
lack of power might have prevented the identification of some storage 
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effects, each regression analysis was repeated but using two separate 
models, one testing only storage duration and one testing only storage 
temperature. The benefit of this change was that the baseline samples 
could be included in the models testing the effect of storage duration.

Comparison between microsamples and intravenous plasma. To 
compare the microsampling and conventional intravenous plasma 
collection approaches, 34 participants were enroled under the 
IRB-approved protocol (IRB-55689 at Stanford University) with written 
consent. Then one microsampling blood sample and one intravenous 
plasma sample were collected for each participant. All the samples were 
immediately saved at the −80 °C for subsequent sample preparation. 
Then all the samples were prepared and used to acquire untargeted 
metabolomics and lipidomics data according to the above protocols. 
For the metabolomics data, after data processing and data curation, 
22,858 metabolic features were detected (RPLC positive mode: 7,487 
features, RPLC negative mode: 4,662 features, HILIC positive mode: 6,362 
features, HILIC negative mode: 4,374 features). Only 642 features with 
annotations (Metabolomics Standards Initiative levels 1 and 2) remained 
for subsequent analysis. For the lipidomics data, 616 lipids were detected. 
All the omics data are provided in Supplementary Dataset 2.

Ensure shake study cohort. Twenty-eight participants were enroled 
in the Ensure shake study under the IRB-approved protocol (IRB-47966 
at Stanford University) with written consent. Twenty-one out of 28 
participants have completed demographic data (Supplementary Fig. 
2). The median SSPG is 166, the median age is 64.2 years, and the median 
BMI is 29.7 kg m−2. Among all the participants, 38% are male, 14.3% are 
Asian, 14.3% are Black, 66.7% are Caucasian and 4.8% are Hispanic. All 
28 participants were mailed a kit containing microsampling devices 
(Mitra device), Ensure shake (contains 440 kcal, 66 g carbohydrate, 
18 g protein and 12 g fat) and instructions for the microsampling sam-
ple collection. Each participant was instructed to consume the Ensure 
shake and then collected microsampling blood samples immediately 
before consuming Ensure shake (baseline, timepoint 0), and at 30, 60, 
120 and 240 min following Ensure shake consumption (Supplementary 
Fig. 2b). Finally, we collected five timepoint microsamples for each 
participant (Supplementary Fig. 2b). Participants were asked to return 
their microsamples by overnight mail the same day after blood sample 
collection. Then all the microsamples were used for multi-omics data 
acquisition, namely, untargeted metabolomics, targeted lipidomics 
and cytokine/hormone. Four participants (S6, S26, S31 and S37) without 
metabolomics data were removed from the final dataset (Supplemen-
tary Fig. 2b). After data cleaning, curation and annotation, 768 analytes 
were detected from the microsamples, containing 560 metabolites, 155 
lipids and 54 cytokines/hormones. All the omics data are provided in 
Supplementary Dataset 3.

24/7 study cohort. Only one participant (male, 64 years old) was 
enroled in the 24/7 study under IRB-approved protocol (IRB-23602 at 
Stanford University) with written consent. The microsampling method 
enables frequent sampling on the order of minutes or hours. However, 
to make it acceptable and executable, the participant was instructed 
to perform self-collected finger prick microsamples approximately 
every hour during waking and every two hours during overnight peri-
ods sporadically for 7 days (Fig. 4a and Supplementary Fig. 6a). In 
addition, the participant was also instructed to leverage several wear-
able devices (Fitbit smartwatch, Dexcom) to acquire comprehensive 
digital data (wearable data), including the HR, step count, CGM and 
food logging. The microsamples were immediately saved on dry ice 
upon collection by the participant and then shipped to the laboratory 
daily. Finally, 97 microsamples in total were collected. They were used 
to perform in-depth multi-omics data acquisition, including (1) untar-
geted proteomics, (2) untargeted metabolomics, (3) semi-targeted 
lipidomics and (4) targeted assay (cytokine, hormones, total protein 

and cortisol). After data processing, curation and annotation, from the 
microsamples, we finally detected a total of 2,213 analytes that included 
1,051 metabolites, 811 lipids, 291 proteins, 45 cytokines, 13 metabolic 
panels (cytokines/hormones), 1 total protein and 1 cortisol. All the data 
are provided as a resource in Supplementary Datasets 6 and 7.

General statistical, bioinformatics analysis and data visualization. 
Most statistical analysis and data visualization were performed using 
RStudio and R language (version 4.1.2). Most of the R packages and 
their dependencies used in this study are maintained in CRAN (https://
cran.r-project.org/) or Bioconductor (https://bioconductor.org/). The 
detailed version of all the packages can be found in Supplementary 
Note. The main script for analysis and data visualization is provided on 
GitHub (https://github.com/jaspershen/microsampling_multiomics).

In general, before all the statistical analysis, the data are log2 
transformed and then auto-scaled. All the multiple comparisons were 
adjusted by the BH method using the ‘p.adjust’ function in R. The R 
functions ‘cor’ and ‘cor.test’ were used to calculate the Spearman cor-
relation coefficients. The R package ‘ggplot2’ was used to perform most 
of the data visualization in this study. The R package ‘Rtsne’ was used 
for the tSNE analysis in the Ensure shake study. The icons used in figures 
are from iconfont.cn, which can be used for uncommercial purposes 
under the MIT license (https://pub.dev/packages/iconfont/license).

Differentially expressed molecules after consuming Ensure shake. 
In the Ensure shake study, the timepoint 0 (before consuming Ensure 
shake) was set as the baseline, and all the other four timepoints were 
compared with the baseline to get the differentially expressed mol-
ecules (metabolites, lipids and cytokines/hormones). The paired Wil-
coxon rank-sum test (‘wilcox.test’ function of R) was used to get the P 
values. The multiple comparisons were adjusted using the BH method 
(‘p.adjust’ function of R). And the adjusted P values less than 0.05 were 
considered as significantly differentially expressed molecules. Then 
the number of significant molecules whose level had changed at differ-
ent timepoints was visualized using a Sankey plot (‘ggalluvial’ package 
of R). Next, after consuming Ensure shake across all the timepoints, 
we identified the entire set of molecules whose levels changed. The 
ANOVA test (‘anova_test’ function from the ‘rstatix’ package in R) was 
used to calculate the P values and then adjusted using the BH method. 
To evaluate whether the significantly expressed molecules we found 
were random or not, a permutation test was performed. In brief, the 
sample labels of omics data were randomly shifted to get the random 
datasets. Then the same method (ANOVA test) was used to find the 
altered molecules for the random dataset. This step was repeated 
100 times to get a null distribution of differential molecules. Then the 
permutation P value was calculated to evaluate whether the expressed 
molecules were random.

Consensus clustering. In the Ensure shake study, the unsupervised 
k-means consensus clustering of all samples was performed with the 
R packages ‘CancerSubtypes’ and ‘ConsensusClusterPlus’ using the 
significantly shifted molecules that were discovered after consum-
ing the Ensure shake68. The data were log2 transformed first and then 
auto-scaled. Samples clusters were detected on the basis of k-means 
clustering, Euclidean distance and 1,000 resampling repetitions in the 
‘ExecuteCC’ function in the range of two to six clusters. The generated 
empirical cumulative distribution function plot initially showed the 
optional separation of two clusters for all samples. To further decide 
how many groups (k) should be generated, the silhouette information 
from clustering was extracted using the ‘silhouette_SimilarityMatrix 
function’. We compared k = 2, 3, 4 and 5 and found that, when k = 2, 
we got high stability for clustering (Extended Data Fig. 2c). From the 
consensus matrix heat maps, two groups seem to have the best cluster-
ing (Extended Data Fig. 2d). So finally, all the samples were assigned 
to two groups.
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Fuzzy c-means clustering. The R package ‘Mfuzz’ was used for fuzzy 
c-means clustering69. In brief, the omics data were first log2 transformed 
and auto-scaled, and then the minimum centroid distances were calcu-
lated for cluster numbers from 2 to 22 by step 1. The minimum centroid 
distance is used as the cluster validity index. Then the optimal cluster 
number was selected according to rule70. To get a more accurate cluster 
number, the clusters whose centre expression data correlations are 
more than 0.8 were merged as one cluster. Then the optimal cluster 
number was used to do the fuzzy c-means clustering. For each cluster, 
only the molecules with memberships of more than 0.5 were retained 
for subsequent analysis.

Metabolic scores. Participant S18 was considered as an outlier in 
the baseline and removed from the dataset for subsequent analysis 
(Supplementary Fig. 3). Then five metabolic scores were calculated: 
(1) Three carbohydrates (fructose, lactic acid and pyruvic acid) were 
detected and used to calculate the carbohydrate score, which repre-
sents the human’s ability to metabolize carbohydrates (Supplemen-
tary Fig. 4). (2) Nine amino acids (alloisoleucine, alanine, isoleucine, 
methionine, norvaline, phenylalanine, tryptophan, tyrosine and 
l-phenylalanine) were detected and used to calculate the amino acid 
score (protein), which represents the human’s ability to metabolize 
proteins (Supplementary Fig. 4). (3) A total of 103 TAGs were detected 
and used to calculate the fat score, representing the human’s ability to 
metabolize the fat (Supplementary Fig. 4). (4) The C-peptide and insulin 
were detected and used to calculate the insulin secretion score, repre-
senting the human’s ability to secrete insulin (Supplementary Fig. 4). (5) 
The eight FFAs (FFA 16:0, FFA 16:1, FFA 18:1, FFA 18:2, FFA 18:3, FFA 22:2, 
FFA 22:5 and FFA 22:6) were detected and used to calculate FFA (insulin 
sensitivity) score, which represents the human’s ability to respond to 
insulin sensitivity (Supplementary Fig. 4). (6) All the cytokines were 
used to calculate the immune response score representing the human’s 
immune response (Supplementary Fig. 5a).

For each metabolic score MS, the molecules Mi (i = 1, 2, 3 … m) in 
this group were first defined and selected (Fig. 3b), and then the dataset 
was log2 transformed and auto-scaled. For each participant and mol-
ecule, the intensity values across all the timepoints were subtracted 
by the baseline value, so the baseline value was 0. Then the AUC Ai, j 
was calculated for molecule Mi (i = 1, 2, 3 … m) and participant Pj (j = 1, 
2, 3 … n). To normalize the Ai,j, the Ai,j were subtracted by the minimum 
min(Ai,j) and divided by the range of all the AUCs (max(Ai,j) − min(Ai,j)). 
The normalized Ai, j is labelled as NAi, j and is from 0 to 1. Then, each 
metabolic score MSj in each participant j is calculated as below:

MSj = mean (
m
∑
i
NAi)

where MSj is the metabolic score for participant j, and NAi is the normal-
ized AUCs of molecule i (i = 1, 2, 3 … m). For the carbohydrate score, 
amino acid (protein) score, fat score and FFA score (insulin sensitivity), 
the high AUCs of molecules mean that the person’s ability to metabolize 
the molecules is low, so the final metabolic scores were calculated as 
1 − MSj. For the insulin secretion score and immune response score, the 
final score is the same as the MSj.

Metabolomics pathway enrichment
To do the metabolomics pathway enrichment, the human KEGG path-
way database was downloaded from KEGG using the R package mass-
Database71. The original KEGG database has 275 metabolic pathways. 
Then we separated them into metabolic pathways or disease pathways 
on the basis of the ‘class’ information for each pathway. The pathways 
with the ‘human disease’ class were assigned to the disease pathway 
database, which contains 74 pathways, and the remaining 201 pathways 
were assigned to the metabolic pathway database. The pathway enrich-
ment analysis is used in the hypergeometric distribution test from the 

tidyMass project72. The BH method was used to adjust P values, and the 
cut-off was set as 0.05 (BH-adjusted P values < 0.05).

Lipidomics data enrichment analysis
The Lipid Mini-on software was used to do the lipid enrichment analy-
sis45. In brief, the lipids’ names were first modified to meet the require-
ment of the tool. The dysregulated lipids were uploaded as query files, 
and all the detected lipids were uploaded as universe files. The default 
Fisher’s exact test was used as the enrichment test method. The cat-
egory, main class, subclass, individual chains, individual chain length 
and number of double bonds were selected for general parameters 
to test. Finally, the enrichment result containing detailed tables and 
networks was downloaded for subsequent analysis.

Proteomics pathway enrichment
The R package ‘clusterProfiler’ was used for proteomics pathway 
enrichment. We first converted the gene ID of proteins to ENTREZID 
ID, and then the Gene Ontology (GO) database was used for GO term 
enrichment analysis. The P values were adjusted using the BH method, 
and the cut-off was set as 0.05. Only the enriched GO terms with at 
least mapped five proteins remained to ensure that the enriched GO 
terms have enough genes. To reduce the redundancy of enriched GO 
terms, the similarity between GO terms was calculated using the ‘Wang’ 
algorithm from the R package ‘simplifyEnrichment’73. And only the 
connections with similarities > 0.3 remained to construct the GO term 
similarity network. Then the community analysis (R package ‘igraph’) 
was used to divide this network into different modules. The GO term 
with the smaller enrichment adjusted P values was selected for each 
module as the representative.

LOESS smoothing data. In the 24/7 study, the timepoints of micro-
samples for each day differ. However, the circadian analysis requires 
enough timepoints for each day. So we leveraged the locally estimated 
scatterplot smoothing (LOESS) method to smooth and predict the 
multi-omics data in the specific timepoints (every half hour) described 
in another publication74. In brief, for each molecule, we fitted it with the 
LOESS regression method for each day (‘loess’ function in R). During the 
fitting, LOESS’s argument ‘span’ was optimized by cross-validation. As 
the gap between 2 days is always more than 4 h, we did not fit the time 
between 2 days for an accurate and robust fitting and prediction. After 
getting the LOESS prediction model, we predicted each molecule’s 
intensity every half hour during the days.

Correlation network and community analysis. In the 24/7 study, 
we constructed a correlation network for each cluster that we got 
using fuzzy c-means clustering. In brief, the Spearman correlation 
was calculated for every two molecules. Only the correlations with 
coefficient > 0.7 and BH-adjusted P values < 0.05 remained for subse-
quent analysis. All the remained correlations were used to construct 
the correlation network. To get more accurate and distinct modules, 
we use the community analysis to extract subnetworks (modules) 
from the correlation network31. Here we used the fast greedy modu-
larity optimization algorithm (‘cluster_fast_greedy’ function from 
the R package ‘igraph’). Finally, 11 clusters and 83 modules were 
detected. The R packages ‘igraph’ and ‘ggraph’ were used to visualize  
the network.

Associations between molecular modules and nutrition intake. 
In the 24/7 study, to evaluate the associations between molecular 
modules and nutrition intake, peak detection (Gaussian distribution 
fitting) was first used to find the ‘peaks’ in each module (Extended 
Data Fig. 3f). If there is a peak, then it is marked as ‘1’ at this time. If not, 
it is marked as ‘0’. For food, if the participant consumes this food at 
this timepoint, then this timepoint will be marked as ‘1’ for this food. 
Then, for each food and module, the Jaccard index was calculated, and 
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only the pairs with a Jaccard index > 0.3 were retained for subsequent 
analysis (Extended Data Fig. 3g).

Consistency score for molecules. In the 24/7 study, the consistency 
score was designed and calculated for each molecule to assess whether 
one molecule is consistent daily. LOESS smoothed data was used for 
consistency score calculation. For each molecule, the Spearman cor-
relations between 2 days were calculated, and the median correla-
tion value was calculated and considered as the consistency score for 
this molecule. Only the molecules with consistency scores > 0.6 were 
retained for the next circadian analysis.

Circadian rhythm analysis. In the 24/7 study, the R package ‘MetaCy-
cle’ is used to do the circadian rhythm analysis43. The LOESS smoothed 
omics data were log2 transformed and auto-scaled. Then, the times 
for samples were set as the timepoints in the ‘meta2d’ function. The 
Lomb–Scargle was selected for circadian rhythm analysis75. The P 
values were adjusted using the BH method. Only the molecules with 
BH-adjusted P values < 0.05 were considered statistically significant 
circadian molecules and retained for subsequent analysis.

Wearable data predicts internal molecules. In the 24/7 study, to 
evaluate whether the wearable data could be used to predict internal 
molecules, the method from a previous publishment30 was used. As 
the frequency of wearable data and internal molecules are different, 
we need to match the internal molecule and wearable data first. The 
matching windows were set as 5, 10, 20, 30, 40, 50, 60, 90 and 120 min, 
respectively. For the wearable data points that matched with internal 
molecules, a feature engineering pipeline30 was used to convert the 
wearable data into eight features: mean value, median value, standard, 
maximum, minimum, skewness, kurtosis and range. So, each wearable 
data point was converted into eight features. The wearable data (HR, 
step count and CGM) were converted to 24 features in total and were 
used as independent variables to predict each internal molecule. The 
random forest model (R package ‘caret’ and ‘RandomForest’), which 
has been proven to have the best prediction accuracy, was used30. The 
24 wearable features were combined for each internal molecule to 
construct the prediction model. The sevenfold cross-validation method 
was used during the prediction model construction. The importance 
of each wearable feature was saved for subsequent analysis.

Lagged correlation. In the 24/7 study, to calculate the lagged correla-
tion between wearable data and internal molecules, we have developed 
the laggedCor algorithm (lagged correlation) and an R package named 
‘laggedcor’ (https://jaspershen.github.io/laggedcor/). The laggedCor 
algorithm can be used to extract potential causal relationships. Let us 
assume that X is wearable data and Y is internal omics data. In a real 
biological system, if X and Y have a causal relationship (X causes Y), Y 
often responds to X after a certain lapse of time. Such a lapse of time is 
called a lag time. This means that X and Y change asynchronously. To 
explore whether X and Y have a potential causal relationship, we just 
shift the lag time between X and Y for matching and then calculate the 
correlation between them. Suppose the X and Y have a potential causal 
relationship and the lag time is T; then we can get the highest lagged 
correlation between X and Y at the lag time T.

Briefly, two time-series data are used as the inputs for laggedcor. 
The lower frequency time-series data (in the 24/7 study, the omics 
data) are labelled as Xt (t ∈ Ti), and the higher frequency time-series 
data (in the 24/7 study, the wearable data) are labelled as Yt (t ∈ Tj). To 
make sure that there are overlaps between Xti and Ytj, they should meet 
the below equation:

Ti ∩ Tj ≠ ∅

Then the two series data, Xt and Yt, are used to calculate the lagged 
correlation as described in the steps below.

Step 1: matching between Xt and Yt. Every sample point Ytj in Y is 
used to match the sample points in Xt. The shift time is labelled as Ts 
(Ts is set on the basis of the frequency of Xt and Yt), and the matching 
time window is labelled as Tw. So the sample points Xti in Xt that meet 
the below equation are labelled as matched sample points for Ytj in Y:

tj + Ts − Tw
2 ≤ ti < tj + Ts + Tw

2 ; i ∈ (1, 2, 3…m)

Then the matched sample points Xti are averaged as Xtj that 
matched with Ytj in Y:

Xtj =
tm
∑
ti
Xti

Then we get the new time-series data Xt (t ∈ Tj).

Step 2: correlation calculation. Then the Spearman correlation 
between Xt and Yt (t ∈ Tj) is calculated with the shift time Ts. And the 
correlation rho and P value are recorded as Corts and pts.

Step 3: repeat step 1 and step 2 with different shift time. Then, step 
1 and step 2 are repeated for a series shift times Tsi, i = 1, 2, 3 … n; Ts1 < 
0 and abs(Ts1) = abs(Tsn). Then we can get a series Corts and a series 
pts, ts ∈ Ts.

Step 4: evaluation of the significance of lagged correlation. The 
maximum correlation of Corts and related P value are extracted as the 
lagged correlation for time-series data Xt and Yt. To evaluate whether 
the lagged correlation is significant, the Gaussian distribution is used 
to fit the Corts, and the correlations in all the shift times are calculated 
using the fitted Gaussian distribution and labelled as PCorts. The qual-
ity score was then calculated as the absolute Spearman correlation 
score between PCorts and Corts. Only the lagged correlation with a 
quality score was considered a real lagged correlation and used for 
subsequent analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the analysed data used in this study are provided as a supplementary 
dataset. Source data are provided with this paper.

Code availability
R version 4.1.2 was used with the base packages and other packages, 
and detailed information is provided in Supplementary Information 
(section Supplementary Note). All the custom scripts for data analysis 
and data visualization are provided open-source via https://github.
com/jaspershen/microsampling_multiomics and Zenodo (https://
zenodo.org/record/7393012#.Y4sEj-yZP0o). The laggedCor algorithm 
and package were developed for lagged correlation calculation and 
are available open-source via https://jaspershen.github.io/laggedcor.
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Extended Data Fig. 1 | Stability analysis of the microsampling approach. 
a, The study design of the protein, metabolite, and lipid stability analyses in 
microsamples. b, The partial R2 distribution for proteins, metabolites, and 

lipids. The most affected protein, metabolite, and lipid by storage duration (c), 
temperature (d) and interaction effect (e), respectively. The icons used in this 
figure are from iconfont.cn.
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Extended Data Fig. 2 | Metabolic phenotyping separates samples and 
subjects. a, tSNA plot using all samples from all the participants. Colors 
represent the participants. b, tNSA plots for 6 participants. Colors represent the 
timepoints. The timepoints are also labeled on the plot. c, Silhouette plots for 
consensus clustering with group numbers 2, 3, 4, and 5. When the group number 

is 2, the Silhouette width achieves the highest value, so the group number is set 
as 2 for subsequent analysis. d, Heatmap plot showing differential clustering of 
molecular features in various samples compared to baseline (0 min) for each 
participant. Green represents low distance, and red represents high distance.  
e, The SSPG values for participants (only 13 participants) in group 1 and group 2.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Wearable and multi-omics data can reflect the 
individual’s health status. a, The Spearman correlations between all the 
clusters from all molecules in 24/7 study using the Fuzzy c-means clustering.  
b, The mosaic plot shows the molecules’ classes for 11 clusters. c, The maximum 
modularity observed in our correlation network community analysis for cluster 
1 was 0.689 at iteration 72 of community pruning. d, The molecule detection 

from the correlation network. The molecules have more connections inside than 
outside and are grouped as a module. e, Cluster 1 and Module 1_4 from it. f, Peak 
detection from the module using the peak detection algorithm. g, The heatmap 
to show the association between modules and nutrition. h, MS2 spectra matching 
plots for 1,2,3-benzenetrlol sulfate, Hydroxyphenyllactic acid, and Salicylic acid, 
respectively.
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Extended Data Fig. 4 | Wearable and multi-omics data can reflect the individual’s health status. a, The correlation plot between Caffeine intensity and sleep score. 
b, The MS2 spectra matching plot for Caffeine. c, Molecules that were upregulated from Wednesday to Friday. d, Molecules that were downregulated from Wednesday 
to Friday.
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Extended Data Fig. 5 | Circadian rhythm analysis for internal molecules. 
a, Consistence scores versus circadian rhythm p-values (-log10). b, Heatmap 
to show all the circadian molecules. c, Spearman correlation plot to show the 

correlations between 5 clusters from circadian molecules. d, The components 
of all 5 clusters. e, Cluster 4 contains 1 cytokine, 3 lipids, 2 metabolites, and 22 
proteins. f, Cluster 3 contains 76 lipids, 1 metabolic panel, and 7 metabolites.
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Extended Data Fig. 6 | Lipid enrichment results for lipids in clusters 1–3. Red represents cluster 1, dark green represents cluster 2 and purple represents cluster 3.
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Extended Data Fig. 7 | Wearable data and internal molecule causal association network. a, Example association network between wearable data and internal 
molecules. b, Node and edge distribution of association network.
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